| 研究生: |
高婉馨 Kao, Wan-Hsin |
|---|---|
| 論文名稱: |
組合契約下製造商與零售商之賽局模式 Manufacturer-Retailer Game Theoretic Model under Portfolio Contract |
| 指導教授: |
林正章
Lin, Cheng-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 組合契約 、需求不確定 、兩階段隨機規劃 、賽局模式 |
| 外文關鍵詞: | Portfolio Contract, Demand Uncertainty, Two-stage stochastic programming, Game Theoretic Model |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究鑒於所回顧的組合契約相關文獻,以往的組合契約主要為兩種模式,(1)單一賣方對單一買方,(2)多賣方對單一買方,進行供應鏈的合作關係,但只探討單方利潤最大化或成本最小化,無探討雙方在整體利益考量下,求解出最適雙方的契約內容。故本研究之假設為單一製造商與單一零售商,考量零售商需求不確定及整體利益下,雙方經過多次協商並協議出最適的組合契約。利用兩階段隨機規劃法建構零售商期望利潤最大化之數學模式,並透過L型演算法進行求解。在數值分析上,藉由兩種不同的情境假設,證明組合契約的功效及利用L型演算法求解零售商之最適產能分配。最後為分析製造商與零售商間之賽局模式關係,運用敏感度分析、L型演算法、雙方之整體利益考量以及雙方完全合作等概念等,求解出最適雙方之組合契約條款。
Portfolio contracts have two modes to proceed the cooperative relationship in supply chain at the past literatures: (1) single seller to single buyer, (2) multiple sellers to single buyer. Most of these literatures only focus on profit maximization or cost minimization for only one of the supply chain members’ while little of literatures investigate the negotiation procedures within the supply chain. Despite of the total profit of the supply chain, this study investigates the optimal contract considering uncertainty of retailer demand and overall benefits in the single manufacturer and single retailer scenario. In this study, the mathematical model which maximizes the retailer’s expected profit is presented by the two-stage stochastic programming method and solved by the L-shaped algorithm. In the numerical analysis, we consider two scenarios to demonstrate the efficacy of the portfolio contract and use L-shaped algorithm to solve the retailer the optimal capacity allocation problem. To analyze the relationship between the manufacturer and the retailer in game theoretic model, we use sensitivity analysis and L-shaped algorithm while considering the overall benefits and the impact of cooperation. As a result, we can further find optimal portfolio contract contents for both parties base on this analysis.
一、中文部分
1.吳宜臻(2011),「供應鏈在價格相依的不確定需求下之最佳化延遲設計」,國立成功大學交通管理科學系碩士論文。
2.王蕙萱(2009),「供應鏈多階段隨機規劃暨動態定價之研究」,國立成功大學交通管理科學系碩士論文。
3.史宏為(2007),「競合供應鏈賽局下的均衡價格」,國立成功大學交通管理科學系碩士論文。
二、英文部分
1.Anupindi, R. & Bassok, Y. (1999), “Supply contracts with quantity commitments and stochastic demand,” Quantitative Models for Supply Chain Management, Massachuestts:Kluwer Academic Publishers.
2.Brown, A., & Lee, H. (1997), “Optimal pay-to-delay capacity reservation with application to the semiconductor industry”, Working paper, Stanford university.
3.Cachon, G.P., & Netessine., S. (2005), “Game Theory in Supply Chain Analysis,” Tutorials in Operations Research, New Orleans:INFORMS.
4.Cachon, G. P. (2004), “The allocation of inventory risk in a supply chain: Push, pull, and advance-purchase discount contracts,” Management Science, 50(2) pp. 222~238.
5.Cachon, G. P. (2003), “Supply chain coordination with contracts,” Handbooks in Operations Research and Management Science: Supply Chain Management, North-Holland.
6.Chopra, S. & Meindl, P. (2004), Supply Chain Management: Strategy, Planning, and Operation, New Jersey: Pearson Prentice Hall.
7.Christopher, M. (1992), Logistics and Supply Chain Management, London: Pitman Publishing.
8.Eppen, G. D., & Iyer, A. V. (1997), “Backup agreements in fashion buying : the value of upstream flexibility,” Management Science, 11(11) pp.1469~1484.
9.Fu, Q., Lee, C. Y., & Teo, C. P. (2010), “Procurement management using option contracts : random spot price and portfolio effect,” IIE Transactions, 42(11) pp.793~811.
10.Gupta, A. & Maranas, C. D. (2003), “Managing demand uncertainty in supply chain planning,” Computers and Chemical Engineering, 27(8-9) pp. 1219~1227.
11.Hou, J. & Zhao, L. (2011), “Backup agreements with penalty scheme under supply disruption,” International Journal of Systems Science, 43(5) pp.987~996
12.Hazra, J. & Mahadevan, B. (2009), “A procurement model using capacity reservation,” European Journal of Operational Research, 193(1) pp. 303~316.
13.Hendricks, K. B., & Singhal, V. R. (2005), “An empirical analysis of the effect of supply chain disruptions on long-run stock price performance and equity risk of the firm,” Production and Operations Management, 14(1) pp. 35~52.
14.Inderfurth, K., Kelle, P., & Kleber, R. (2011), “Dual sourcing using capacity reservation and spot Market : optimal procurement policy and heuristic parameter determination,” Working Paper, 14.
15.Mentzer, J. T., Flint, D. J., & Hult, G. T. M. (2001), “Logistics Service Quality as a Segment-Customized Process,” Journal of Marketing, 65(4) pp. 82~104.
16.Nosoohi, I. & Mollaverdi, N. (2011), “Modeling of Capacity Reservation and Supplier Selection Based on Option Contract,” International Journal of Industiral Engineering and Producion Research, 22(2) pp. 135~141.
17.Nash, J. (1953), “Two-person cooperative games,” Econometric Society, 21(1) pp. 128~140.
18.Nash, J. (1951), ‘Non-cooperative games,” Annals of Mathematics, 54(2) pp.286~ 295.
19.Pasternack, B. A. (1985), “Optimal pricing and return policies for perishable commodities,” Marketing science, 4(2) pp.166~176.
20.Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E.(2008), Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies(3rd ed.), New York: McGraw-Hill.
21.Serel, D. A. (2007), “Capacity reservation under supply uncertainty,” Computers and Operations Research, 34(4) pp.1192~1220.
22.Taylor, D. L. & Brunt, D. (2001), Manufacturing Operations and Supply Chain Management : The Lean Approch, London: Thomson International Business Press.
23.Tang, C. S. (2006a), “Perspectives in supply chain risk management,” International Journal of Production Economics, 103(2) pp. 451~488.
24.Tomlin, B. (2006), “On the value of mitigation and contingency strategies
for managing supply chain disruption risks,” Management Science, 52(5) pp.639~657.
25.van Delft, C. & Vial, J. P. (2004), “A pratical implementation of stochastic programming: an application to the evaluation of option contracts in supply chains,” Automation, 40(5) pp. 743-756.
26.Van Slyke, R., & Wets, R. (1969), “L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming,” SIAM Journal on Applied Mathematics, 17(4) pp. 638~663.
27.von Neumann, J. & Morgenstern, O. (1944), Theory of Games and Economic Behavior, Princeton: Princeton University Press.
28.Wu, D. J., Kleindorfer, P. R., & Zhang, J. E. (2002), “Optimal bidding and contracting strategies for capital-intensive goods,” European Journal of Operational Research, 137(3) pp. 657~676.
校內:2015-08-09公開