| 研究生: |
鄭榮華 Cheng, Jung-hua |
|---|---|
| 論文名稱: |
青藤鹼在動物模式上透過嗎啡μ型受體所產生的作用及影響 Effect of sinomenine on opioid-μ receptor in animal |
| 指導教授: |
鄭瑞棠
Cheng, Juei-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 部分致效劑 、青藤鹼 、嗎啡成癮 |
| 外文關鍵詞: | partial agonist, morphine-dependent, sinomenine |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
青藤鹼(青藤鹼)是由防己科植物(Sinomenium acutum)根莖所提取之生物鹼。文獻指出青藤鹼具有抗發炎、免疫抑制及鎮痛之作用。然而,其作用的機轉仍不明確。由於青藤鹼的結構式與嗎啡相類似,推測青藤鹼可能為一嗎啡類生物鹼。因此,本研究將探討青藤鹼是否會透過活化嗎啡類受體(opioid receptor)來產生作用。首先,利用已轉植入嗎啡-μ型受體(opioid-μ receptor)的中國倉鼠卵巢細胞(Chinese Hamster Ovary cells, CHO cells )進行放射性受體結合實驗,結果發現隨著青藤鹼的濃度增加,結合於嗎啡-μ型受體上的[3H]naloxone則逐漸減少,顯示青藤鹼具有與嗎啡-μ型受體結合的能力。利用甩尾試驗(tail-flick)發現青藤鹼在小鼠會以劑量相關的方式產生鎮痛效果,而且,青藤鹼無法在嗎啡μ型受體剔除的小鼠(opioid-μ receptor KO mice)產生相同的鎮痛效果。過去研究指出顱腔內注射(intracerebroventricular; i.c.v.) 嗎啡會使正常大鼠體內的血糖上升,並且會增加食慾及產生止痛的功能。本實驗亦將青藤鹼以同樣方式投予至大鼠腦內,發現給予低濃度的青藤鹼會使老鼠體內血糖上升,且此血糖上升的現象會被naloxone及naloxonazine所抑制。不同的是當濃度提高,血糖上升比例則減少。並且,利用高濃度的青藤鹼前處理下可阻斷原本嗎啡所誘導的血糖上升、食慾增加及鎮痛效果的產生。接著,在體外的實驗中,發現青藤鹼在嗎啡μ型受體磷酸化的表現上一樣具有部分致效劑的特性。此外,我們發現前處理30 mg/kg的青藤鹼可以有效減緩嗎啡所造成的疼痛耐受性;在使用100mg/kg高劑量的青藤鹼則可以減少長期使用嗎啡所產生的戒斷症狀(withdrawal symptoms)及心理上的酬賞(rewarding)作用。綜合以上結果,我們推測青藤鹼在嗎啡μ型受體上具有部分致效劑的特性,並且具有發展成為改善嗎啡中毒或成癮之物質的潛力。
Sinomenine is an alkaloid extracted from the roots and stems of Sinomenium acutum. It has been demonstrated to possess analgesia, antiinflammation and immunosuppression. However, the mechanism is still unclear. Due to the sinomenine is similar to morphine in structure, the present study is to investigate the effects of sinomenine via opioid-μ receptor. Results showed decrease of [3H]naloxone binding in parallel with an increase of sinomenine in Chinese Hamster Ovary (CHO) cells transfected with opioid-μ receptor. Using tail-flick test, sinomenine does-dependently produced antinociceptive effects in wild-type mice but not in opioid-μ receptor knockout mice. Similar to morphine,intracerebroventricular administration of sinomenine caused hyperphagia, hyperglycemia and antinociception significantly in rats but which blocked by naloxone or naloxonazine; however, sinomenine at high dose produced antagonism of these effects. In addition, sinomenine showed a partial agonist-like property on the phosphorylation of opioid-μ receptor in CHO cells. Pretreatment with 30 mg/kg sinomenine may delay the analgesic tolerance of morphine, whereas sinomenine at high dose of 100 mg/kg causes attenuation in morphine-induced withdrawal symptoms and rewarding. Taken together, the obtained results suggest that sinomenine has a partial agonist-like action through modulation of opioid-μ receptors showing a potential to be useful for opiate abuse.
Bao GH, Qin GW, Wang R, Tang XC (2005) Morphinane alkaloids with cell protective effects from Sinomenium acutum. J Nat Prod 68: 1128-1130.
Bodnar RJ, Klein GE (2004) Endogenous opiates and behavior: 2003. Peptides 25: 2205-2256.
Cador M, Rivet JM, Kelley AE, Le MM, Stinus L (1989) Substance P, neurotensin and enkephalin injections into the ventral tegmental area: comparative study on dopamine turnover in several forebrain structures. Brain Res 486: 357-363.
Candinas D, Mark W, Kaever V, Miyatake T, Koyamada N, Hechenleitner P, Hancock WW (1996) Immunomodulatory effects of the alkaloid sinomenine in the high responder ACI-to-Lewis cardiac allograft model. Transplantation 62: 1855-1860.
Chen SW, Mi XJ, Wang R, Wang WJ, Kong WX, Zhang YJ, Li YL (2005) Behavioral effects of sinomenine in murine models of anxiety. Life Sci 78: 232-238.
Deng HB, Yu Y, Wang H, Guang W, Wang JB (2001) Agonist-induced μ opioid receptor phosphorylation and functional desensitization in rat thalamus. Brain Res 898: 204-214.
Di Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080.
Emmerson PJ, Clark MJ, Mansour A, Akil H, Woods JH, Medzihradsky F (1996) Characterization of opioid agonist efficacy in a C6 glioma cell line expressing the μ opioid receptor. J Pharmacol Exp Ther 278 : 1121–1127.
Errick JK, Heel RC (1983) Nalbuphine: a preliminary review of its pharmacological properties and therapeutic efficacy. Drugs 26:191–211.
Feldberg W, Gupta KP (1974) Morphine hyperglycemia. J Physiol 238: 487-502.
Johnson EA, Oldfield S, Braksator E, Cuello AG, Couch D, Hall KJ, Mundell SJ, Bailey CP, Kelly E, Henderson G (2006) Agonist- selective mechanisms of μ-opioid receptor desensitization in human embryonic kidney 293 cells. Mol Pharmacol 70: 676-685.
Kahveci N, Gulec G, Ozluk K (2006) Effects of intracerebroventricular-injected morphine on anxiety, memoryretrieval and locomotor activity in rats: Involvement of vasopressinergic system and nitric oxide pathway. Pharmacol Biochem Behav 85: 859-867
Kawamata T, Omote K, Toriyabe M, Kawamata M, Namiki A (2002) Intracerebroventricular morphine produces antinociception by evoking gama-aminobutyric acid release through activation of 5-hydroxytryptamine 3 receptors in the spinal cord. Anesthesiology 96: 175-1182
Lao ZY (1985) Sinomenine combined with methotrexate in treating rheumatoid arthritis cases. Xien Yi Xue 3: 292-293.
Lee SC, Wang JJ, Ho ST, Tao, PL (1997) Nalbuphine coadministered with morphine prevents tolerance and dependence. Anesth Analg 84: 810-815.
Liu L, Riese J, Resch K, Kaever V (1994) Impairment of macrophage eicosanoid and nitric oxide production by an alkaloid from Sinomenium acutum. Arzneimittel-Forschung 44: 1223-1226.
Loh HH, Liu HC Cavalli A, Yang W, Chen YF, Weim LN (1998) μ-opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Mol Brain Res 54: 321-326.
Lue WM, Huang EYK, Yang SN, Wong CSG, PL Tao (2007) Post- treatment of dextromethorphan reverses morphine effect on conditioned place preference in rats. Synapse 61: 420-428.
Mann PE, Arjune D, Romero MT, Pasternak GW, Hahn EF, Bodnar RJ (1988) Differential sensitivity of opioid-induced feeding to naloxone and naloxonazine. Psychopharmacology 94: 330-341.
Mark W, Schneeberger S, Seiler R, Stroke DM, Amberger A, Offner F, Candinas D, Margreiter R (2003) Sinomenine blocks tissue remodeling in a rat model of chronic cardiac allograft rejection. Transplantation 15: 940-945
Matsumoto K, Horie S, Takayama H, Ishikawa H, Aimi N, Ponglux D, Murayama T, Watanabe K (2005) Antinociception, tolerance and withdrawal symptoms induced by 7 hydroxymitragynine,an alkaloid from the Thai medicinal herb Mitragyna speciosa Life Sci 78: 2-7
Matthes HWD, Maldonado R, Simonin F, Valverde O, Slowe, S, Kitchen I, Befort K, Dierich A, Le MM, Dolle P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383: 819-823.
Matthews RT, German DC (1984) Electrophysiological evidence for the excitation of rat vental tegmental area dopamine neurons by morphine. Neuroscience 3: 617-625.
McLean S, Hoebel BG (1983) Feeding induced by opiates injected into the paraventricular hypothalamus. Peptides 4: 287-92.
Narita, M, Suzuki T, Funada M, Misawa M, Nagase H (1993) Blockade of the morphine-induced increase in turnover of dopamine on the mesolimbic dopaminergic system by k-opioid receptor activation in mice. Life Sci 52: 397-404.
Narita, M., Funada, M, Suzuki, T (2001) Regulations of opioid dependence by opioid receptor types. Pharmacol Ther 89: 1-15.
Rimanoczy A, Slamberova R, Riley MA, Vathy I (2003) Adrenocorticotropin stress response but not glucocorticoid-negative feedback is altered by prenatal morphine exposure in adult male rats. Neuroendocrinology 78:312–320.
Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR (1997) Opiate receptor knockout mice define μ receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94: 1544-1549
Spanagel R, Herz A, Shippenberg TS (1990) The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem 55: 1734-1740.
Stanley BG, Lanthier D, Leibowitz SF (1989) Multiple brain sites sensitive to feeding stimulation by opioid agonists: a cannula- mapping study. Pharmacol Biochem Behav 31: 825-832.
Tao PL, Liang KW, Sung WY, Wu YT, Huang EYK (2006) Nalbuphine is effective in decreasing the rewarding effect induced by morphine in rats. Drug Alcohol Depend 84: 175-181.
Wang, CY, Mo ZX, Liang RN (2002) Effects of sinomenine on withdrawal syndrome in morphine-dependent mice. Jie Fang Jun Yao Xue Xue Bao 18: 263-265.
Woods JS, Leibowitz SF (1985) Hypothalamic sites sensitive to morphine and naloxone: effects on feeding behavior. Pharmacol Biochem Behav 23: 431-438.
Yamasaki, H (1976) Pharmacology of sinomenine, an anti-rheumatic alkaloid from Sinomenium acutum. Acta Medica Okayama 30: 1-20.
Yu Y, Zhang L, Yin X, Sun H, Uhl GR, Wang JB (1997)μ-opioid receptor phosphorylation, desensitization and ligand efficacy. J Biol Chem 272: 28869-28874.
Zhang L, Yu Y, Mackin S, Weight FF, Uhl GR, Wang JB (1996) Differential μ opiate receptor phosphorylation and desensitization induced by agonists and phorbol esters. J Biol Chem 271: 11449-11454.
校內:2037-08-01公開