簡易檢索 / 詳目顯示

研究生: 李穎柔
Lee, Yin-Jou
論文名稱: 利用陽極氧化法製備二氧化鈦奈米管及其光催化甲基橙之研究
Titanium dioxide nanotubes prepared by anodic oxidation and the photocatalytic properties of methyl orange
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 89
中文關鍵詞: 二氧化鈦奈米管陽極氧化法光催化甲基橙
外文關鍵詞: titanium dioxide, nanotubes, anodic oxidation, photocatalysis, methyl orange
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗透過沒有繁雜步驟且成本不高的陽極氧化法 (Anodic Oxidation) 製備二氧化鈦奈米管(Titanium Dioxide Nanotubes) 在金屬鈦基材上,並將其應用於光催化甲基橙 (Methyl Orange)。透過調整實驗參數分別為:電解液中的氟化銨濃度、電解液溶液中乙二醇與水的體積比、陽極處理時施加電位、反應時間,找出最適合用於光催化甲基橙染料的二氧化鈦奈米管。
    其中以掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 分析樣品的型貌以及利用其電腦內建軟體求得奈米管管徑、管長等尺寸資訊並分析之,再由X射線繞射分析儀 (X-ray Diffractometer, XRD) 鑑定二氧化鈦奈米管在退火處理過後晶相結構的改變。最後進行對光催化甲基橙的效能探討,本實驗使用長型的紫外光燈照射含有二氧化鈦奈米管的甲基橙溶液,並以光纖可見光光譜儀測量其吸收度計算濃度的變化。
    由實驗結果得知,以氟化銨濃度0.6wt% 乙二醇與水之比例為100:4混和之溶液作為電解液,進行陽極氧化處理兩小時,期間給予電壓50V得到管徑為90.3 nm,長度為8.87 μm之二氧化鈦奈米管狀結構薄膜。並由X光繞射圖譜得知,二氧化鈦奈米管結構經過500°C退火熱處理一小時後,可由未結晶相轉變為銳鈦礦結構,應用在光催化甲基橙時有較佳的效果。

    In this work we prepared titanium dioxide nanotubes (TNA) on titanium substrate by anodic oxidation which is low-cost and easy to use, and we discussed their ability to photocatalyze methyl orange. We controlled ammonium fluoride concentration in electrolyte, the water content in electrolyte solution, the applied voltage, the anodizing time and annealing temperature to fabricate various titanium dioxide nanotube for photocatalyze methyl orange. The top-view and cross-section morphology of titanium dioxide nanotubes were observed by scanning electron microscopy. The diameter of titanium dioxide nanotubes and the tube length were also defined by SEM. To identifify the crystallinity of TNA were changed to anatase after annealing. Photocatalytic efficiency was characterized by measuring the decay concentration of methylene orange solution. We use long UV lamp for irradiated the methyl orange solution. After the reaction, the concentration of methyl orange was measured by fiber visible spectrometer. As a result, anodization with the electrolyte of the mixture of NH4F 0.3 wt% + EG: H2O (volume ratio) = 100:4, constant voltage 50 V for 2h which has the best photocatalyze activity due to its larger surface area.

    摘要 I 致謝 XI 目錄 XII 圖目錄 XV 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 二氧化鈦簡介 2 1-3 二氧化鈦奈米管簡介 4 1-3-1 二氧化鈦奈米管特性 4 1-3-2 二氧化鈦奈米管的製備方法 5 1-3-3 二氧化鈦奈米管的應用 5 1-4 研究動機 7 1-5 研究目的 7 第二章 實驗理論 8 2-1 陽極氧化法 8 2-1-1 製備二氧化鈦奈米管之發展 8 2-1-2 二氧化鈦奈米管生長機制 9 2-2 光催化反應 12 2-2-1 半導體光催化反應 12 2-2-2 二氧化鈦光催化機制 13 2-2-3 甲基橙降解機制 15 2-3 退火機制 18 第三章 實驗內容 19 3-1 實驗設備 19 3-2 實驗藥品及耗材 20 3-3 鑑定儀器 20 3-4 實驗流程 21 3-5 實驗步驟 21 3-5-1 鈦片前處理 21 3-5-2 電解液配製 22 3-5-3 製備二氧化鈦奈米管 22 3-5-4 二氧化鈦奈米管之退火處理 24 3-5-5 二氧化鈦奈米管之性質分析 24 第四章 結果與討論 27 4-1 氟化銨濃度對製備二氧化鈦奈米管影響之探討 27 4-1-1 形貌分析 27 4-1-2 尺寸分析 29 4-1-3 退火處理對光催化甲基橙之探討 31 4-1-4 結構鑑定 35 4-1-5 光催化反應分析 36 4-2 施加電壓對製備二氧化鈦奈米管影響之探討 39 4-2-1 形貌分析 39 4-2-2 尺寸分析 43 4-2-3 結構鑑定 47 4-2-4 光催化反應分析 49 4-3 反應時間對製備二氧化鈦奈米管影響之探討 53 4-3-1 形貌分析 53 4-3-2 尺寸分析 56 4-3-3 結構鑑定 60 4-3-4 光催化反應分析 62 4-4 溶液水量對製備二氧化鈦奈米管影響之探討 65 4-4-1 形貌分析 65 4-4-2 尺寸分析 69 4-4-3 結構鑑定 74 4-4-4 光催化反應分析 76 第五章 結論 79 參考文獻 81 附錄 86

    [1] Fujishima, A., Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
    [2] Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z., Dickey, E. C., Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 2001, 16 (12), 3331-3334.
    [3] Frank, S. N., Bard, A. J., Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. The Journal of Physical Chemistry 1977, 81 (15), 1484-1488.
    [4] O'Regan, B., Grätzel, M., A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
    [5] Yu, S., Peng, X., Cao, G., Zhou, M., Qiao, L., Yao, J., He, H., Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochimica Acta 2012, 76, 512-517.
    [6] Pang, X., He, D., Luo, S., Cai, Q., An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sensors and Actuators B: Chemical 2009, 137 (1), 134-138.
    [7] Reyes-Coronado, D., RodrIguez-Gattorno, G., Cab, C., Coss, R. d., Oskam, G., Espinosa-Pesqueira, M. E., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology (Print) 2008, 19 (14), 10.
    [8] Kraeutler, B., Bard, A. J., Heterogeneous photocatalytic synthesis of methane from acetic acid - new Kolbe reaction pathway. Journal of the American Chemical Society 1978, 100 (7), 2239-2240.
    [9] Sclafani, A., Herrmann, J. M., Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. The Journal of Physical Chemistry 1996, 100 (32), 13655-13661.
    [10] Mohamad, M., Ul Haq, B., Ahmed, R., Shaari, A., Ali, N., Hussain, R., A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs. Materials Science in Semiconductor Processing 2015, 31, 405-414.
    [11] 張昭賢, 鈦電極工學. 冶金工業出版社 2003, 1~69.
    [12] Wang, G., Nanowires of Functional Oxides. In Nanowires and Nanobelts: Materials, Properties and Devices Volume 2: Nanowires and Nanobelts of Functional Materials, Springer US: Boston, MA, 2003, pp 113-137.
    [13] Thavasi, V., Renugopalakrishnan, V., Jose, R., Ramakrishna, S., Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Materials Science and Engineering: R: Reports 2009, 63 (3), 81-99.
    [14] Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D. A., Murakami, T., Fujishima, A., Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol. The Journal of Physical Chemistry C 2008, 112 (1), 253-259.
    [15] Chen, Y., Crittenden, J. C., Hackney, S., Sutter, L., Hand, D. W., Preparation of Novel TiO2-Based p−n Junction Nanotube Photocatalyst. Environmental Science & Technology 2005, 39 (5), 1201-1208.
    [16] Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., Formation of Titanium Oxide Nanotube. Langmuir 1998, 14 (12), 3160-3163.
    [17] Hoyer, P., Formation of a Titanium Dioxide Nanotube Array. Langmuir 1996, 12 (6), 1411-1413.
    [18] Wu, D., Liu, J., Zhao, X., Li, A., Chen, Y., Ming, N., Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts. Chemistry of Materials 2006, 18 (2), 547-553.
    [19] Yu, J.-G., Yu, H.-G., Cheng, B., Zhao, X.-J., Yu, J. C., Ho, W.-K., The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition. The Journal of Physical Chemistry B 2003, 107 (50), 13871-13879.
    [20] Jaroenworaluck, A., Regonini, D., Bowen, C. R., Stevens, R., Allsopp, D., Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte. Journal of Materials Science 2007, 42 (16), 6729-6734.
    [21] Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., Schmuki, P., TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science 2007, 11 (1), 3-18.
    [22] Zhang, Z., Yuan, Shi, G., Fang, Y., Liang, L., Ding, H., Jin, L., Photoelectrocatalytic Activity of Highly Ordered TiO2 Nanotube Arrays Electrode for Azo Dye Degradation. Environmental Science & Technology 2007, 41 (17), 6259-6263.
    [23] Xie, Y., Photoelectrochemical application of nanotubular titania photoanode. Electrochimica Acta 2006, 51 (17), 3399-3406.
    [24] Macak, J. M., Barczuk, P. J., Tsuchiya, H., Nowakowska, M. Z., Ghicov, A., Chojak, M., Bauer, S., Virtanen, S., Kulesza, P. J., Schmuki, P., Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol. Electrochemistry Communications 2005, 7 (12), 1417-1422.
    [25] Paulose, M., Mor, G. K., Varghese, O. K., Shankar, K., Grimes, C. A., Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. Journal of Photochemistry and Photobiology A: Chemistry 2006, 178 (1), 8-15.
    [26] Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K., Grimes, C. A., Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Letters 2005, 5 (1), 191-195.
    [27] Varghese, O. K., Paulose, M., LaTempa, T. J., Grimes, C. A., High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters 2009, 9 (2), 731-737.
    [28] Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N., Graetzel, M., Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115 (14), 6382-6390.
    [29] Zhu, K., Neale, N. R., Miedaner, A., Frank, A. J., Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Letters 2007, 7 (1), 69-74.
    [30] Kang, S. H., Kim, J.-Y., Kim, Y., Kim, H. S., Sung, Y.-E., Surface Modification of Stretched TiO2 Nanotubes for Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2007, 111 (26), 9614-9623.
    [31] Si, H.-Y., Sun, Z.-H., Zhang, H.-L., Photoelectrochemical response from CdSe-sensitized anodic oxidation TiO2 nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 313-314, 604-607.
    [32] Varghese, O. K., Gong, D., Paulose, M., Ong, K. G., Grimes, C. A., Hydrogen sensing using titania nanotubes. Sensors and Actuators B: Chemical 2003, 93 (1), 338-344.
    [33] Liu, S., Chen, A., Coadsorption of Horseradish Peroxidase with Thionine on TiO2 Nanotubes for Biosensing. Langmuir 2005, 21 (18), 8409-8413.
    [34] Chitose, N., Ueta, S., Seino, S., Yamamoto, T. A., Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, γ-ray and electron beams. Chemosphere 2003, 50 (8), 1007-1013.
    [35] Kabra, K., Chaudhary, R., Sawhney, R. L., Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-Phase Photocatalysis:  A Review. Industrial & Engineering Chemistry Research 2004, 43 (24), 7683-7696.
    [36] Macak, J. M., Tsuchiya, H., Taveira, L., Aldabergerova, S., Schmuki, P., Smooth Anodic TiO2 Nanotubes. Angewandte Chemie International Edition 2005, 44 (45), 7463-7465.
    [37] Paulose, M., Prakasam, H. E., Varghese, O. K., Peng, L., Popat, K. C., Mor, G. K., Desai, T. A., Grimes, C. A., TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil:  Phenol Red Diffusion. The Journal of Physical Chemistry C 2007, 111 (41), 14992-14997.
    [38] Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., Aucouturier, M., Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. 1999, 27 (7), 629-637.
    [39] Cai, Q., Paulose, M., Varghese, O., A. Grimes, C., The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation. 2005, Vol. 20, p 230-236.
    [40] Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose, M., Varghese, O. K., Grimes, C. A., Highly-ordered TiO2nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18 (6), 065707.
    [41] Regonini, D., Bowen, C. R., Jaroenworaluck, A., Stevens, R., A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports 2013, 74 (12), 377-406.
    [42] Paulose, M., Shankar, K., Yoriya, S., Prakasam, H. E., Varghese, O. K., Mor, G. K., Latempa, T. A., Fitzgerald, A., Grimes, C. A., Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length. The Journal of Physical Chemistry B 2006, 110 (33), 16179-16184.
    [43] S. Brammer, K., Oh, S., Frandsen, C., Jin, S., Biomaterials and Biotechnology Schemes Utilizing TiO2 Nanotube Arrays. 2011.
    [44] Smith, Y. R., Ray, R. S., Carlson, K., Sarma, B., Misra, M., Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications. Materials 2013, 6 (7), 2892-2957.
    [45] Smith, Y. Physicochemical and Geometrical Factors that Influences the Photocatalytic Degradation Kinetics of a Model Water Contaminate. 2011.
    [46] Okamoto, K.-i., Yamamoto, Y., Tanaka, H., Tanaka, M., Itaya, A., Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder. Bulletin of The Chemical Society of Japan - BULL CHEM SOC JPN 1985, 58 (7), 2015-2022.
    [47] Kumar, K., Chowdhury, A., Use of Novel Nanostructured Photocatalysts for the Environmental Sustainability of Wastewater Treatments. In Reference Module in Materials Science and Materials Engineering, Elsevier: 2018.
    [48] Sohn, Y. S., Smith, Y. R., Misra, M., Subramanian, V., Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes. Applied Catalysis B: Environmental 2008, 84 (3-4), 372-378.
    [49] Park, H., Choi, W., Visible light and Fe(III)-mediated degradation of Acid Orange 7 in the absence of H2O2. Journal of Photochemistry and Photobiology A: Chemistry 2003, 159 (3), 241-247.
    [50] Lee, H., Park, Y.-K., Kim, S.-J., Kim, B.-H., Yoon, H.-S., Jung, S.-C., Rapid degradation of methyl orange using hybrid advanced oxidation process and its synergistic effect. Journal of Industrial and Engineering Chemistry 2016, 35, 205-210.
    [51] Dafale, N., Rao, N. N., Meshram, S. U., Wate, S. R., Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium – Biostimulation and halo tolerance. Bioresource Technology 2008, 99 (7), 2552-2558.
    [52] Al-Qaradawi, S., Salman, S. R., Photocatalytic degradation of methyl orange as a model compound. Journal of Photochemistry photobiology A: Chemistry 2002, 148 (1-3), 161-168.
    [53] Han, J., Zeng, H.-Y., Xu, S., Chen, C.-R., Liu, X.-J., Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange. Applied Catalysis A: General 2016, 527, 72-80.
    [54] 王道爱, 刘盈, 王成伟, 周峰, 阳极氧化法制备TiO2纳米管阵列膜及其应用. 2010, 22 (06), 1035-1043.
    [55] A. Jain, S. P. O., G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 2013, 1 (1), 011002.
    [56] Kim, D. W., Enomoto, N., Nakagawa, Z. E., Kawamura, K. Molecular Dynamic Simulation in Titanium Dioxide Polymorphs: Rutile, Brookite, and Anatase. Journal of the American Ceramic Society 1996, 79 (4), 1095-1099.
    [57] Swope, R. J., Smyth Joseph, R., Larson Allen, C., H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. American Mineralogist 1995, 80 (5-6), 448.
    [58] Lim, J. H., Choi, J., Titanium Oxide Nanowires Originating from Anodically Grown Nanotubes: The Bamboo-Splitting Model. Small (Weinheim an der Bergstrasse, Germany) 2007, 3, 1504-7.
    [59] Hsu, M.-Y., Hsu, H.-L., Leu, J., TiO2 nanowires on anodic TiO2 nanotube arrays (TNWs/TNAs): Formation mechanism and photocatalytic performance. Journal of The Electrochemical Society 2012, 159 (8), H722-H727.
    [60] 張智信. 陽極處理法製備二氧化鈦奈米管狀結構並應用於染料敏化太陽能電池之研究. 國立臺北科技大學, 台北市, 2008.
    [61] Raja, K. S., Gandhi, T., Misra, M., Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochemistry Communications 2007, 9 (5), 1069-1076.
    [62] Raja, K. S., Misra, M., Paramguru, K., Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochimica Acta 2005, 51 (1), 154-165.
    [63] Taziwa, R., Lupiwana, M., Meyer, E., Katwire, D., Structural, Morphological, Topographical Characterization of Titanium Dioxide Nanotubes Metal Substrates for Solar Cell Application. Journal of Material Science and Technology Research 2017, 3 (2), 17-31.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE