| 研究生: |
陳慶榆 Chen, Ching-Yu |
|---|---|
| 論文名稱: |
波浪與相鄰彈性透水潛堤互相作用之分析 Analysis of Wave Interaction with Submerged Adjacent Porous Elastic Breakwaters |
| 指導教授: |
許泰文
Hsu, Tai-Wen 藍元志 Lan, Yuan-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 相鄰潛堤 、彈性 、透水 、潛堤 |
| 外文關鍵詞: | Adjacent breakwaters, Elastic materials, Porous structures, Submerged breakwater |
| 相關次數: | 點閱:133 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討波浪與相鄰彈性透水性潛堤相互作用之問題,提出一理論解析解,求解理論與方法為延伸Lan and Lee(2010)所提出的單一彈性透水潛堤理論。兩相鄰彈性透水潛堤分別為均質且等向透水之彈性介質。論文求解上將問題之區域共劃分成七個部分,藉由交界面邊界條件的連續性,即為潛堤與流體交界面處之動力邊界條件壓力連續與質量通率連續,配合正交性特性將波浪與相鄰彈性透水潛堤互制作用問題聯立求解,據此波浪與相鄰彈性透水潛堤之解析解即可求出。在模式驗證上,本文與Mei and Black(1969)之不透水剛性潛堤,李和劉(1995)、黃和林(1997)之透水剛性潛堤,Lan and Lee(2010)之彈性透水潛堤之解析解結果比較,均得到合理結果。文中主要分兩部份做探討,第一部分為相同材質下相鄰彈性透水潛堤堤寬的改變、滲透性係數變化對波場的影響;第二部份為不同材質下相鄰彈性透水潛堤堤寬改變、前後位置改變、滲透性係數變化對波浪的影響。根據分析結果顯示相同彈性透水材質下兩潛堤堤寬相等時有較大的能量損失;在剛性透水材質與彈性透水材質組合之不同材質下,同一種潛堤堤寬的組合中,其前後順序互相交換,僅對於波浪的反射波有明顯不同的影響,在透過波與能量損失方面,則影響較不明顯。
In this study, the problem of wave interaction with submerged adjacent porous elastic breakwaters is solved analytically. The method of solution is an extension from Lan and Lee (2010), a single submerged poro-elastic structure which is sloved by subjecting to boundary conditions. The submerged adjacent porous elastic breakwaters are assumed to be homogeneous, isotropic and elastic. The problem of the study domain is divided into seven regions, from which the form of solution can be in terms of harmonic functions. Using the matching boundary conditions, i.e., kinematic and dynamic conditions combined with orthogonality, a set of simultaneous equations is developed and solved numerically. By comparing the analytic solution with the rigid submerged breakwater (Mei and Black, 1969), permeable rigid submerged breakwater (Lee and Liu, 1995 ; Huang and Lin, 1997) and poro-elastic submerged breakwater (Lan and Lee, 2010), favorable agreements are found. This study focuses on two main parts, (a) changes of width of breakwater and permeable coefficient effect on wave profile, and (b) the effect of materials and configurations of breakwater on wave variation. The theoretical analysis shows that the largest energy loss occurs when the adjacent structures are both having the same material and width. For the case the different materials, the configuration of adjacent breakwaters significiently affect the reflection coefficient, while the energy loss and transmission coefficient are less obviously influenced.
1.Biot, M.A. (1941), General theory of three-dimensional consolidation. Journal of Applied Physics, Vol. 12, pp. 155-164.
2.Dalrymple, R.A., Losada, M.A. and Martin, P.A. (1991),”Reflection and transmission from porous structures under oblique wave attack,” Journal of Fluid Mechanics, Vol. 224, pp. 625-644.
3.Darcy, H. (1856), Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris.
4.Kreyszing, E. (1983), Advanced Enginerring Mathematics. John Wiley, New York.
5.Ghisalberti, M., Nepf, H.M., (2002). Mixing layers and coherent structures in vegetated aquatic flows. J.Geophys. Res. 107(C2) (3), 1-11.
6.Ghisalberti, M., Nepf, H.M., (2008). “Shallow flows over a permeable medium: The hydrodynamics of submerged aquatic canopies.” Transport in Porous Media, Vol. 78, no. 3, pp. 385-402.
7.Lan and Lee (2010), “On waves Propagating over a submerged poro-elastic structure” Jorunal of Ocean Engineering, Vol. 37, pp. 705-717.
8.Lan Y.J., Hsu T.W., J. W., Chang, C. C. and Ting C. H., (2011). “Bragg scattering of waves propagating over a series of poro-elastic submerged breakwaters.” Jorunal of Wave Motion, Vol. 48, pp. 1-12.
9.Lee, C.P. (1987), Wave interaction with permeable structures, Ph.D. Thesis, Oregon State University, Oregon, USA.
10. Lee, J.F. and Lan Y.J. (1996), “A second-order solution of waves passing porous structure,” Ocean Engineering, Vol. 23, No. 2, pp. 143-156.
11.Li C.W., Yan, K., (2007). “Numerical investigation of wave-current-vegetation interaction”, Journal of Hydraulic Engineering, 133(7), 794-803.
12.Losada, I.J., Silva, R. And Losada, M.A.(1996a), “3-D non-breaking regular wave interaction with submerged breakwaters,” Coastal Engineering, Vol. 28, pp. 229-248.
13.Losada, I.J., Silva, R. And Losada, M.A.(1996b), “Interaction of non-breaking directional random waves with submerged breakwaters,” Coastal Engineering, Vol. 28, pp.249-266.
14.Madsen, O.S. (1974), “Wave transmission through porous dtructures.” Joural of Waterways, Harbours and Coastal Engineering Division, ASCE, Vol. 100 (WW3), pp. 169-188.
15.Madsen, O.S. and White, S.M. (1976), “Wave transmission through trapezoidal breakwaters,” Proc. 15th Coastal Engineering Conference, pp. 2662-2676.
16.Mei, C.C. and Black, J.L. (1969), “Scatting of surface waves by rectangular obstacles in waters of finite depth,” Journal of Fluid Mechanics, Vol.38, PP. 499-511.
17.Muskat, M. (1949), Physical priniciples of oil production, McGraw-Hill Book Co., Inc., New York, N. Y., pp. 128
18.Panayotis prinos et al. (2010), “Wave propagation over posidonia oceanica: large scale experiments,” Proceedings of the HYDEALAB III Joint User Meeting, Hannover, February.
19.Putnam, J.A. (1949). “Loss of wave energy due to percolation in a permeable sea bottom,” Transaction of American Geophysical Union, Vol. 30, pp. 349-356.
20.Scarlatos, P.D. and Singh, V.P. (1987), “Long-wave transmission through porous breakwaters.” Coastal Engineering, Vol. 11, pp. 141-157.
21.Sulisz, W., McDougal, W.G. and Sollott, C.K. (1989), “Wave interaction with rubble toe protection,” Ocean Engineering, Vol. 16, No. 5/6, pp. 463-473.
22.Sollitt, C.K. and Cross, R.H. (1972), “Wave transmission through permeable breakwaters,” Proceeding 13th Costal Engineering Conference, ASCE, Vancouver, pp. 1827-1846.
23.Sulisz, W. (1985), “Wave reflection and transmission at permeable breakwaters of arbitrary cross-section,” Coastal Engineering, Vol. 9, pp.371-386.
24.Verruijt, A. (1969), “Elastic storage of aquifers,” Flow through Porous Media, edited by De Wiest, R.J.M., Academic, New York, pp. 331-376.
25.Yamamoto, T., Koning, H.L., Sellmeiger, H. and Van Hijum, E.V. (1978), “On the Response of a Poro-elastic Bed to Water Waves,” Journal of Fluid Mechanics, Vol. 87, pp. 193-206.
26.李兆芳,劉正琪 (1995),”波浪通過透水潛堤之新理論解析”,第十七屆海洋工程研討會論文集,593頁-605頁。
27. 藍元志,李兆芳 (1998),”波浪通過透水彈性底床之互制作用”,第二十屆海洋工程研討會論文集,203頁-210頁。
28.藍元志,李兆芳 (1999),”波浪與彈性透水潛堤之互制作用”,第二十一屆海洋工程研討會論文集,205頁-212頁。
29.藍元志 (2000),”波浪與可透水彈性體互相作用之分析”,國立成功大學水利及海洋工程研究所博士論文。
30.黃材成,林怡成 (1997),”透水式潛堤波浪特性之實驗研究”,第十九屆海洋工程研討會論文集,220頁-227頁。
31.葉旭璽 (2008),”連續彈性透水潛堤與波浪之互制分析”,國立成功大學水利及海洋工程研究所碩士論文。