簡易檢索 / 詳目顯示

研究生: 許昱元
Hsu, Yu-Yuan
論文名稱: 無元素法在彈性振動之分析
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 63
中文關鍵詞: 無元素法振動
外文關鍵詞: DRKM, Meshfree
相關次數: 點閱:59下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用無元素法(Meshfree method)中微分再生核近似法(Differential Reproducing Kernel Approximation method,DRKM)來分析探討彈性振動的問題。本方法是以離散點代替切割網格的方式來建構數值模型,再依所選取之基底函數向量以離散再生核近似之法則求出再生核形狀函數 與其各階導數,之後再配合中央差分法(CDM)、Wilson-θ法、Newmark 法以及Houbolt法對一維及二維之彈性振動問題進行分析。

    本文的數據資料或與解析解,或與其他方式計算之數據進行比較,結果顯示令人滿意,驗證了微分再生核近似法在彈性振動分析上的可行性。

    目錄 摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 緒論 1 1.1 前言 1 1.2 無元素法的發展與參考文獻 3 1.3 本文架構 4 第二章 無元素法理論推導 6 2.1 離散再生核近似 6 2.2 再生核形狀函數之導數 8 第三章 DRKM於動力問題之分析與應用 14 3.1時間分析法之探討 14 3.1.1中央差分法(CDM) 14 3.1.2 Wilson-θ法 16 3.1.3 Newmark法 19 3.1.4 Houbolt法 21 3.1.5無元素法與四種時間分析法之混合應用 23 3.2一維振動分析 23 3.2二維振動分析 24 第四章 數值分析結果 26 4.1 一維動力問題分析 26 4.2 二維動力問題分析 52 第五章 結論 59 參考文獻 61

    參考文獻

    [1] L. B.Lucy, Anumerical approach to the testing of the fission hypothesis, The Astron. J.8 (12), 1013-1024 (1977).

    [2] B.Nayroles, Touzot, G. and Villon, P.: Generalizing the finite element method diffuse approximation and diffuse elements, Comput. Mech. 10, 307-318 (1992).

    [3] T.Belytschko, L.Gu, and Y. Y. Lu, Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Engrg. 2, 519-534 (1994).

    [4] W. K.Liu, S.Jun, and Y. F.Zhang, Reproducing kernel particle methods, Int. J. Number. Methods Engrg.20, 1081-1106 (1995).

    [5] J. S.Chen, C.T.Wu, and W.K.Liu, Reproducing kernel particle methods for large deformation analysis of non-linear structures, Computer Methods in Applied Mechanics And Engineering. 139, 195-227. (1996).

    [6] E.Oñate, S.Idelsohn, O. C.Zienkiewicz, R. L.Taylor, and C.Sacco, A stabilized finite point method for analysis of fluid mechanics problems, Computer Methods in Applied Mechanics & Engineering
    ,139 ,315-346 (1996).

    [7] S.Li, W.Hao, W. K. Liu, Numerical simulation of large deformation of thin shell structures using meshfree methods. Computational Mechanics 25, 102-116 (2000).

    [8] G.J.Wagner, W.K.Liu,Turbuleence simulation and multiple scale subgrid models.Computational Mechanics 25 (2000).117-136

    [9] J.-S.Chen ,H.-P. Wang ,S.Yoon ,Y. You ,Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact. Computational Mechanics 25 (2000) 137-156

    [10] 盛若磐,”元素釋放法積分法則與權函數之改良”,近代工程計算論壇(2000)論文集,國立中央大學土木系,2000.

    [11] T.Belytschko, Y. Krongauz, D.Orang, N.Fleming, Meshless methods:An overview and recent developments, Computer Methods in Applied Mechanics & Engineering, 139, 3-47(1996).

    [12] P.Krysl, and Belytschko, ESFLIB, A Library to Compute The element free Galerkin shape functions,Computer Methods in Applied Mechanics & Engineering, 190, 2181-2205(2001).

    [13] H.Tada, P. C.Paris, and G. R.Irwin, The stress analysis of cracks handbook, Third Edition (2000).

    [14] S. H.JU, Simulating stress intensity factors for anisotropic materials by the least-squares method, International Journal of Fracture, 81, 283-297 (1996).

    [15] M.Fleming, Y. A.Chu, B. Moran, T.Bleytschko, Y. Y.Lu, L.Gu, Enriched element-free Galerkin methods for creak-tip fields. Int. J. Numer. Meth. Engng , 40, 1483-1504 (1997).

    [16] Y. T. Gu, R. Liu,A meshless local Petrov-Galerkin (MLPG)method for free and forced vibration analyses for solids, Computational Mechanics 27 188-198(2001)

    [17] J. K. Chen, J. E. Beraun, C. J. Jih,A corrective smoothed particle method for transient elastoplastic dynamics, Computational Mechanics 27 177-187(2001)

    [18] Klaus-Jűrgen Bathe,Finite element procedures in engineering analysis,Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 499-554(1982)

    下載圖示 校內:立即公開
    校外:2003-07-28公開
    QR CODE