| 研究生: |
曾資凱 Tseng, Tsu-Kai |
|---|---|
| 論文名稱: |
菸鹼醯胺腺嘌呤二核苷酸磷酸氧化酶缺陷小鼠在塵螨-脂多醣的刺激後經由增加促炎間質巨噬細胞、Siglec-F+嗜中性球和LTi-like第三型自然類淋巴細胞誘發肺纖維化 Der P-LPS stimulation induces more severe lung fibrosis through increased TNF-α-producing M1 interstitial macrophages, Siglec-F-expressing neutrophils and LTi-like type 3 innate lymphoid cells in NOX2-deficient mice |
| 指導教授: |
謝奇璋
Shieh, Chi-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 嗜中性白血球 、表達Siglec-F 嗜中性白血球 、間質巨噬細胞 、M1/M2 極化 、腫瘤壞死因子 、肌成纖維細胞 、肺纖維化 、LTi 樣ILC3 、白細胞介素-17A |
| 外文關鍵詞: | neutrophils, Siglec-F-expressing neutrophils, interstitial macrophages, M1/M2 polarization, TNF-α, myofibroblasts, lung fibrosis, LTi-like ILC3s, IL-17A |
| 相關次數: | 點閱:41 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過敏性氣喘是一種慢性疾病,由免疫細胞引起肺部發炎會導致嗜酸性白血球增多或嗜中性白血球增多。在近半個世紀,發現過敏性氣喘病情的進展可能會導致肺纖維化,但由於肺纖維化的機制尚不明確。根據過去的了解,巨噬細胞和嗜中性白血球在受到脂多醣 (LPS) 或病原體刺激時會產生活性氧化物質 (ROS) 來介導病原體引起的肺部發炎並調控免疫平衡。此外 NADPH 氧化酶2 (NOX2) 的缺陷導致細胞無法產生 ROS,進而使巨噬細胞和嗜中性白血球球失去清除病原體的功能。近年科學家們發現,自然類類淋巴細胞和輔助T細胞類似,可以調控免疫細胞活化和組織發炎。過去的研究顯示,表達 Siglec-F 嗜中性白血球可能透過在人類腎臟中產生 TGF-β、TNF-α 和 IL-1β 去誘導組織纖維化。另一篇研究發現,間質巨噬細胞 (IM) 產生雙調蛋白-1 (Arg-1) 來誘導成纖維細胞的分化和增殖。此外有一篇研究表明,LTi 樣 ILC3 可能透過產生 IL-17A 和 IL-22 來調節組織發炎。先前本實驗室發現,用屋塵蟎 (Der P) 刺激的 NOX2 缺陷小鼠具有更強的肺部炎症,且觀察到嗜中性白血球和嗜酸性粒細胞浸潤的現象,而這些小鼠有更嚴重的肺纖維化的產生。然而,目前尚不清楚 NOX2 如何影響免疫細胞去誘導肺纖維化。在這篇研究,我們利用 Der P 和 LPS (Der P-LPS) 刺激 WT 和 Cybb-/- 雌性小鼠來建立過敏性氣喘模型。首先,我們使用蘇木精和伊紅 (H&E) 染色法和 Masson 三色染色法,確定 Der P-LPS 刺激會導致 Cybb-/- 小鼠具有更嚴重的細胞浸潤和膠原蛋白產生。此外,我們透過肺功能測試證實,Der P-LPS 刺激的 Cybb-/- 小鼠會誘發嚴重的氣道高反應性和肺纖維化。此外,我們檢測整個肺組織中的細胞因子,發現在 Der P-LPS 刺激後,Cybb-/- 小鼠中 TNF-α、IL-1β、IL-4 和 IL-17A 的產量提升。隨後,我們使用流式細胞儀分析肺組織中的顆粒球、巨噬細胞、成纖維細胞和自然類類淋巴細胞 (ILC) 群。結果顯示,Der P-LPS 刺激後,Cybb-/- 小鼠中嗜中性白血球、表達 Siglec-F 嗜中性白血球、間質巨噬細胞和肺泡巨噬細胞 (AM) 的數量均有所增加。此外,當Cybb-/- 小鼠受到 Der P-LPS 刺激時,間質巨噬細胞極化為 M1 表型,而肺泡巨噬細胞則極化為 M2 表型。此外,在 Der P-LPS 刺激的 Cybb-/- 小鼠中,間質巨噬細胞產生 TNF-α 的能力提升,且成纖維細胞會轉分化更多肌成纖維細胞。在自然類淋巴細胞分析結果顯示,與 WT 相比,Der P-LPS 刺激後 Cybb-/- 小鼠中 LTi 樣 ILC3 的數量更多。此外,Cybb-/- 小鼠的ILC2s 中 IL-17A 的產量高於 WT 小鼠,且 LTi 樣 ILC3s 比 ILC3s 具有產生更多 IL-17A 的能力。這些發現顯示,NOX2 缺陷小鼠中的 Der P-LPS 刺激會導致間質巨噬細胞、肺泡巨噬細胞、表達 Siglec-F 嗜中性白血球和 LTi 樣 ILC3 的累積。而這樣的情況下,極化為 M1 表型的間質巨噬細胞可能會產生 TNF-α,進而導致肺纖維化。本研究的結果釐清 NOX2 缺乏所導致自然免疫失調的疾病機轉,並對慢性肉腫病患過敏原誘導的肺纖維化提供重要的線索。
Allergic asthma is a chronic disease, which is induced lung inflammation causing the eosinophilia or neutrophilia. In the past half-century, the disease progression of allergic asthma has often resulted in lung fibrosis, which is difficult to resolve in clinical treatment due to the unclear mechanisms underlying lung fibrosis. Lack of NADPH oxidase 2 (NOX2) results in an inability to produce ROS, which impairs the effector functions of macrophages and neutrophils to remove pathogens. Innate lymphoid cells modulate tissue inflammation and induce the number of immune cells to clear pathogens in innate immune responses. A previous study showed that Siglec-F-expressing neutrophils may induce tissue fibrosis by the production of TGF-β, TNF-α and IL-1β in human kidney. In addition, interstitial macrophages (IMs) produced Amphiregulin-1 (Arg-1) to induce the differentiation and proliferation of fibroblasts. Moreover, LTi-like ILC3s may modulate the tissue inflammation and homeostasis by the production of IL-17A and IL-22. We previously found that NOX2 deficiency stimulated with Dermatophagoides pteronyssinus (Der P) have stronger lung inflammation characterized by infiltration of both neutrophils and eosinophils, and observed more severe lung fibrosis in those mice. However, it remained unclear how NOX2 affect different immune cell populations to induce lung fibrosis. We utilized female mice of WT and Cybb-/- challenged with Der P along with LPS (Der P-LPS) to established the allergic asthma model. Firstly, we identified that Der P-LPS stimulation causes more severe cell infiltration and collagen production, and observe more severe airway hyperreactivity and lung stiffness in Cybb-/- mice. The level of whole lung cytokine found that the production of TNF-α, IL-1β, IL-4, and IL-17A was elevated in Cybb-/- mice following Der P-LPS stimulation. In cell population analysis, we examined the numbers of neutrophils, Siglec-F-expressing neutrophils, IMs, alveolar macrophages (AMs), and LTi-like ILC3s were increased in Cybb-/- mice after Der P-LPS stimulation.In addition, the polarization of IMs to M1 phenotype, and the polarization of AMs to M2 phenotype in Cybb-/- mice. Moreover, the production of TNF-α in IMs were promoted in Der P-LPS- stimulated Cybb-/- mice, and LTi-like ILC3s have greater ability to produce IL-17A than ILC3s. Furthermore, the differentiation of fibroblasts into myofibroblasts were induced in Cybb-/- mice after Der P-LPS stimulation. These findings indicated that Der P-LPS stimulation in NOX2-deficient mice leads to the accumulation of IMs, AMs, Siglec-F-expressing neutrophils, and LTi-like ILC3s. M1-polarized IMs may produce TNF-α, contributing to lung fibrosis. The results from this study shed important light on the role of innate immune cells in allergen-induced pulmonary fibrosis in patients with chronic granulomatous diseases and may provide therapeutic clues for conditions involving NOX2 deficiency in the future.
1. Brusselle, G.G. and G.H. Koppelman, Biologic Therapies for Severe Asthma. N Engl J Med, 2022. 386(2): p. 157-171.
2. Zhang, A.B.F.a.Q., <3-s2.0-B0123708796002520-main.pdf>. Encyclopedia of Respiratory Medicine, 2006.
3. Mortimer, P.M., S.A. Mc Intyre, and D.C. Thomas, Beyond the Extra Respiration of Phagocytosis: NADPH Oxidase 2 in Adaptive Immunity and Inflammation. Front Immunol, 2021. 12: p. 733918.
4. Fischer, M.T., et al., NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain, 2012. 135(Pt 3): p. 886-99.
5. Du-Chu Wu, D.B.r.r.R., Makiko Nagai, Harry Ischiropoulos, Serge Przedborski, The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. PNAS, 2006.
6. O'Neill, S., et al., Genetic disorders coupled to ROS deficiency. Redox Biol, 2015. 6: p. 135-156.
7. Panday, A., et al., NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol, 2015. 12(1): p. 5-23.
8. Qu, J., et al., Recent developments in the role of reactive oxygen species in allergic asthma. J Thorac Dis, 2017. 9(1): p. E32-E43.
9. Herb, M. and M. Schramm, Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel), 2021. 10(2).
10. Veenith, T., et al., High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci Rep, 2022. 12(1): p. 10484.
11. Azzouz, D., M.A. Khan, and N. Palaniyar, ROS induces NETosis by oxidizing DNA and initiating DNA repair. Cell Death Discov, 2021. 7(1): p. 113.
12. Won, H.Y., et al., Enhancement of Allergen-induced Airway Inflammation by NOX2 Deficiency. Immune Netw, 2011. 11(3): p. 169-74.
13. Vermot, A., et al., NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel), 2021. 10(6).
14. Song, Z., et al., NADPH oxidase 2 limits amplification of IL-1beta-G-CSF axis and an immature neutrophil subset in murine lung inflammation. Blood Adv, 2023. 7(7): p. 1225-1240.
15. Salvator, H., et al., Pulmonary manifestations in adult patients with chronic granulomatous disease. Eur Respir J, 2015. 45(6): p. 1521-3.
16. Wynn, T.A. and T.R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med, 2012. 18(7): p. 1028-40.
17. Camelo, A., et al., The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol, 2014. 4: p. 173.
18. Yang, L., et al., FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev, 2021. 62: p. 94-104.
19. Wilson, M.S. and T.A. Wynn, Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol, 2009. 2(2): p. 103-21.
20. Bain, C.C. and A.S. MacDonald, The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol, 2022. 15(2): p. 223-234.
21. Aegerter, H., B.N. Lambrecht, and C.V. Jakubzick, Biology of lung macrophages in health and disease. Immunity, 2022. 55(9): p. 1564-1580.
22. Bleriot, C., S. Chakarov, and F. Ginhoux, Determinants of Resident Tissue Macrophage Identity and Function. Immunity, 2020. 52(6): p. 957-970.
23. Kolaczkowska, E. and P. Kubes, Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol, 2013. 13(3): p. 159-75.
24. Rosenberg, H.F., K.D. Dyer, and P.S. Foster, Eosinophils: changing perspectives in health and disease. Nat Rev Immunol, 2013. 13(1): p. 9-22.
25. Lambrecht, B.N. and H. Hammad, The immunology of asthma. Nat Immunol, 2015. 16(1): p. 45-56.
26. Ge, X.N., et al., Endothelial and leukocyte heparan sulfates regulate the development of allergen-induced airway remodeling in a mouse model. Glycobiology, 2014. 24(8): p. 715-27.
27. Yum, H.Y., et al., Allergen-induced coexpression of bFGF and TGF-beta1 by macrophages in a mouse model of airway remodeling: bFGF induces macrophage TGF-beta1 expression in vitro. Int Arch Allergy Immunol, 2011. 155(1): p. 12-22.
28. Laddha, A.P. and Y.A. Kulkarni, VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir Med, 2019. 156: p. 33-46.
29. Gu, Y., et al., The emerging roles of interstitial macrophages in pulmonary fibrosis: A perspective from scRNA-seq analyses. Front Immunol, 2022. 13: p. 923235.
30. Ryu, S., et al., Siglec-F-expressing neutrophils are essential for creating a profibrotic microenvironment in renal fibrosis. J Clin Invest, 2022. 132(12).
31. Morita, H., K. Moro, and S. Koyasu, Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol, 2016. 138(5): p. 1253-1264.
32. Vivier, E., et al., Innate Lymphoid Cells: 10 Years On. Cell, 2018. 174(5): p. 1054-1066.
33. Hams, E., R. Bermingham, and P.G. Fallon, Macrophage and Innate Lymphoid Cell Interplay in the Genesis of Fibrosis. Front Immunol, 2015. 6: p. 597.
34. Senoo, S., et al., Pulmonary fibrosis and type-17 immunity. Respir Investig, 2023. 61(5): p. 553-562.
35. Tacho-Pinot, R., et al., Bcl6 is a subset-defining transcription factor of lymphoid tissue inducer-like ILC3. Cell Rep, 2023. 42(11): p. 113425.
36. 凌倫翎, 菸鹼醯胺腺嘌呤二核甘酸磷酸氧化酶缺陷之肺部嗜中性粒細胞和巨噬細胞上程序性死亡配體1之低表現影響自然淋巴球細胞群並加重過敏性肺部炎症, in 臨床醫學研究所. 2023, 國立成功大學: 台南市. p. 55.
37. 黃名毅, 白血球菸鹼醯胺腺嘌呤二核苷酸磷酸氧化酶的缺損加重塵螨誘發的肺纖維化, in 臨床醫學研究所. 2021, 國立成功大學: 台南市. p. 51.
38. Lange, P., et al., Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. N Engl J Med, 2015. 373(2): p. 111-22.
39. Affiliations, R.O.C.I., <Pulmonary-Function Testing.pdf>. 1994.
40. Yamasaki, A., R. Okazaki, and T. Harada, Neutrophils and Asthma. Diagnostics (Basel), 2022. 12(5).
41. Pelaia, G., et al., Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediators Inflamm, 2015. 2015: p. 879783.
42. Segal, B.H.M.D., et al., <Genetic, Biochemical, and Clinical Features of Chronic Granulomatous Disease.pdf>. Medicine (Baltimore), 2000.
43. Wynn, T.A. and K.M. Vannella, Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 2016. 44(3): p. 450-462.
44. Nobs, S.P. and M. Kopf, Tissue-resident macrophages: guardians of organ homeostasis. Trends Immunol, 2021. 42(6): p. 495-507.
45. LeSuer, W.E., et al., Eosinophils promote effector functions of lung group 2 innate lymphoid cells in allergic airway inflammation in mice. J Allergy Clin Immunol, 2023. 152(2): p. 469-485 e10.
46. Li, B.W., et al., T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice. Eur J Immunol, 2016. 46(6): p. 1392-403.
47. Teng, F., et al., ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. Cell Rep, 2021. 37(8): p. 110051.
48. Zhao, S., et al., Lipopolysaccharides promote a shift from Th2-derived airway eosinophilic inflammation to Th17-derived neutrophilic inflammation in an ovalbumin-sensitized murine asthma model. Journal of Asthma, 2017. 54(5): p. 447-455.
49. Hook, J.S., et al., Nox2 Regulates Platelet Activation and NET Formation in the Lung. Front Immunol, 2019. 10: p. 1472.
50. Singel, K.L. and B.H. Segal, NOX2-dependent regulation of inflammation. Clin Sci (Lond), 2016. 130(7): p. 479-90.
51. Paclet, M.H., S. Laurans, and S. Dupre-Crochet, Regulation of Neutrophil NADPH Oxidase, NOX2: A Crucial Effector in Neutrophil Phenotype and Function. Front Cell Dev Biol, 2022. 10: p. 945749.
52. Matsui, M., et al., A novel Siglec-F(+) neutrophil subset in the mouse nasal mucosa exhibits an activated phenotype and is increased in an allergic rhinitis model. Biochem Biophys Res Commun, 2020. 526(3): p. 599-606.
53. Shi, T., et al., Alveolar and lung interstitial macrophages: Definitions, functions, and roles in lung fibrosis. J Leukoc Biol, 2021. 110(1): p. 107-114.
54. Ogawa, T., et al., Macrophages in lung fibrosis. Int Immunol, 2021. 33(12): p. 665-671.
55. Schyns, J., F. Bureau, and T. Marichal, Lung Interstitial Macrophages: Past, Present, and Future. J Immunol Res, 2018. 2018: p. 5160794.
56. Sourav Bhattacharya, R.A.I., Wei Yang, Jorge David Rojas Márquez, Yanan Li, Guangming Huang, Wandy L. Beatty, Jeffrey J. Atkinson, John H. Brumell, Juhi Bagaitkar, Jeffrey A. Magee, Mary C. Dinauer, <Macrophage NOX2 NADPH oxidase maintains alveolar homeostasis in mice.pdf>. 2022.
57. Otaki, N., et al., Activation of ILC2s through constitutive IFNgamma signaling reduction leads to spontaneous pulmonary fibrosis. Nat Commun, 2023. 14(1): p. 8120.
58. Malainou, C., et al., Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest, 2023. 133(19).
59. Yao, Y., X.H. Xu, and L. Jin, Macrophage Polarization in Physiological and Pathological Pregnancy. Front Immunol, 2019. 10: p. 792.
60. Zhang, L., et al., Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res, 2018. 19(1): p. 170.
61. Xu, Q., et al., NADPH Oxidases Are Essential for Macrophage Differentiation. J Biol Chem, 2016. 291(38): p. 20030-41.
62. Guan, T., et al., Regulatory T cell and macrophage crosstalk in acute lung injury: future perspectives. Cell Death Discov, 2023. 9(1): p. 9.
63. Sonnenberg, G.F. and M.R. Hepworth, Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol, 2019. 19(10): p. 599-613.
64. Yang, D., et al., The Role of Group 3 Innate Lymphoid Cells in Lung Infection and Immunity. Front Cell Infect Microbiol, 2021. 11: p. 586471.
65. Li, S., et al., Type 3 innate lymphoid cells induce proliferation of CD94(+) natural killer cells. J Allergy Clin Immunol, 2017. 140(4): p. 1156-1159 e7.
66. Chang, Y., et al., Increased GM-CSF-producing NCR(-) ILC3s and neutrophils in the intestinal mucosa exacerbate inflammatory bowel disease. Clin Transl Immunology, 2021. 10(7): p. e1311.
67. van de Pavert, S.A., Lymphoid Tissue inducer (LTi) cell ontogeny and functioning in embryo and adult. Biomed J, 2021. 44(2): p. 123-132.
68. Savage, A.K., H.E. Liang, and R.M. Locksley, The Development of Steady-State Activation Hubs between Adult LTi ILC3s and Primed Macrophages in Small Intestine. J Immunol, 2017. 199(5): p. 1912-1922.
69. Lyu, M., et al., ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature, 2022. 610(7933): p. 744-751.
70. Quail, D.F., et al., Neutrophil phenotypes and functions in cancer: A consensus statement. J Exp Med, 2022. 219(6).
71. Pfirschke, C., et al., Tumor-Promoting Ly-6G(+) SiglecF(high) Cells Are Mature and Long-Lived Neutrophils. Cell Rep, 2020. 32(12): p. 108164.
72. Engblom, C., et al., Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils. Science, 2017. 358(6367).
73. Herro, R., et al., TL1A Promotes Lung Tissue Fibrosis and Airway Remodeling. J Immunol, 2020. 205(9): p. 2414-2422.
74. Doherty, T.A., et al., The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nat Med, 2011. 17(5): p. 596-603.
校內:2029-08-22公開