簡易檢索 / 詳目顯示

研究生: 王念恩
Wang, Nien-En
論文名稱: 利用主方程研究相互作用量子點間的量子輸運
Quantum Transport in Interacting Quantum Dots based on Master Equation Approach
指導教授: 張為民
Zhang, Wei-Min
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 49
中文關鍵詞: 量子點庫侖相互作用主方程式量子傳輸
外文關鍵詞: Quantum Dot, Coulomb Interaction, Master Equation, Quantum Transport
相關次數: 點閱:96下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們研究多個量子點(quantum dot)連接到電極的量子傳輸特性,每個量子點可包含多個能階及庫侖相互作用(Coulomb interaction)。我們從Liouville-von Neumann equation出發,完整保留了庫侖相互作用的效應,並對電極的自由度求積,首先得到修飾後波恩近似(modified Born approximation)下的非局域主方程式(master equation),接著進一步作馬可夫近似(Markovian approximation),得到局域主方程式。並從此主方程求得時間域(time domain)的傳輸電流。我們將此主方程應用到單個雜質安德森模型(single impurity Anderson model),證明了此方法在近藤溫度(Kondo temerature)以上,任意偏壓下皆可適用。接著我們進一步應用到AB干涉儀(Aharonov-Bohm interferometer)上,討論庫侖相互作用對兩個態之間同調性(coherence)的影響。最後我們提出一個實驗上可實現的同調性控制最佳方法,不但可使之達到純態(pure state),並可藉由外加磁場控制兩個態之間的相位差。

    In this thesis, we utilize master equation approach to study the quantum dynamics of the interacting quantum dots system, including the double quantum dots and the multilevel quantum dots coupled to the source and the drain. We derive master equation based on the Liouville-von Neumann equation under modified Born and Born-Markovian approximation, in which the Coulomb interactions are exactly solved. We also obtain the transport current in time domain. We show that the approach works well for arbitrary bias above the Kondo temperature. The transport property of the single impurity Anderson model, and the role of Coulomb interaction on coherence
    between two charge states of the Aharonov-Bohm interferometer are explored. We also propose an optimal coherence control of an qubit for realizing the quantum computation.

    1 Introduction 5 1.1 Basis of Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Quantum Transport Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Master Equation 8 2.1 Double Quantum Dots with On-Site Coulomb Interaction . . . . . . . . . . 8 2.1.1 The Master Equation under Modi¯ed Born approximation . . . . . 10 2.1.2 The Master Equation under Modi¯ed Born-Markovian Approximation 12 2.1.3 Bloch-Type Rate Equation . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Multilevel Quantum Dots with Coulomb Interaction . . . . . . . . . . . . . 16 3 Transport Current 19 4 Applications 23 4.1 Single Impurity Anderson Model . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 Zero Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 Non-Zero Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Aharonov-Bohm Interferometer . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Conclusion and Perspective 41 Bibliography 43 A Derivation of Eq. (2.17) 47

    [1] A. I. Ekimov and A. A. Onushchenko, JETP 34, 345-349.
    [2] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore and A. E. Wetsel, Phys. Rev. Lett. 60, 535(1988).
    [3] S.M. Reimann, and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).
    [4] L. Banyai, and S. W. Koch, Semiconductor Quantum Dots (World Scientific, Singapore, 1993).
    [5] D. Loss, and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
    [6] M. A. Nielsen and I. A. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
    [7] W. D. Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett. 88, 037901 (2002)
    [8] W. Lu, Z. Ji, L. Pfei®er, K. W. West, and A. J. Rimberg, Nature 423, 422 (2003).
    [9] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science 309, 2180 (2005).
    [10] T. Fujisawa, T. Hayashi, ans S. Sasaki, Rep. Prog. Phys. 69, 759 (2006).
    [11] K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and L. M. K. Vandersypen, Science 318, 1430 (2007).
    [12] R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118(1963).
    [13] M. W. Y. Tu and W. M. Zhang, Phys. Rev. B 78, 235311 (2008).
    [14] J. S. Jin, M. W. Y. Tu, W. M. Zhang and Y. J. Yan, New J. Phys 12, 083013 (2010).
    [15] H. N. Xiong, W. M. Zhang, X. G. Wang, and M. H. Wu, Phys. Rev. A 82, 012105(2010).
    [16] C. U. Lei, W. M. Zhang, Annl. Phys. 327, 1408-1433 (2012).
    [17] M. B}uttiker, Phys. Rev. B 38, 9375 (1988).
    [18] P. Sautet and C. Joachim, Phys. Rev. B 38, 12238(1988).
    [19] Y. M. Blanter, M. BAuttiker, Phys. Rep 336, 1-166(2000).
    [20] J. Schwinger, J. Math. Phys. 2, 407 (1961).
    [21] L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).
    [22] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 66, 3048 (1991).
    [23] A. Levy Yeyati, A. Martin-Rodero, and F. Flores, Phys. Rev. Lett. 71, 2991 (1993).
    [24] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors Springer, Berlin, 1996.
    [25] N. S. Wingreen, A. P. Jauho and Y. Meir, Phys. Rev. B 48, 8487 (1993).
    [26] N. S. Wingreen, A. P. Jauho and Y. Meir, Phys. Rev. B 50, 5528 (1994).
    [27] J. Maciejko, J. Wang, and H. Guo, Phys. Rev B 74, 085324 (2006).
    [28] V. Moldoveanu, V. Gudmundsson, and A. Manolescu, Phys. Rev. B 76, 165308(2007).
    [29] Y. Wei, and J. Wang, Phys. Rev. B 79, 195315 (2009).
    [30] C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).
    [31] J. M. Kinaret, Y. Meir, N. S. Wingreen, P. A. Lee, and X. G. Wen, Phys. Rev. B 46, 4681 (1992).
    [32] D. Pfannkuche and S. E. Ulloa, Phys. Rev. Lett. 74, 1194 (1995).
    [33] S. A. Gurvitz and Y. S. Prager, Phys. Rev. Lett. 53, 15932 (1996).
    [34] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
    [35] U.Weiss, Quantum Dissipative Systems, 2nd ed. (World Scienti¯c, Singapore, 2000).
    [36] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions:Basics Processes and Applications (Wiley, New York, 1992).
    [37] J. N. Pedersen and A. Wacker, Phys. Rev. B 72, 195330 (2005).
    [38] C. Timm, Phys. Rev. B 77, 195416 (2008).
    [39] J. S. Jin, X. Zheng, and Y. J. Yan, J. Chem. Phys. 128, 234703 (2008).
    [40] X. Zheng, J. S. Jin, and Y. J. Yan, J. Chem. Phys. 129, 184112 (2008).
    [41] X. Zheng, J. S. Jin and Y. J. Yan, New J. Phys. 10, 093016 (2008).
    [42] X. Zheng, J. S. Jin, S. Welack, M. Luo, and Y. J. Yan, J. Chem. Phys. 130, 164708(2009).
    [43] R. Bulla, T. Costi and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).
    [44] K. G. Wilson, Rev. Mod. Phys. 47, 77380 (1975).
    [45] R. Bulla, A. C. Hewson and Th. Pruschke, J. Phys.: Condens. Matter 10, 8365(1988).
    [46] F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Phys. Rev. B 79, 235336 (2009).
    [47] X. Q. Li, J. Y. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Phys. Rev. B 71, 205304(2005).
    [48] H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics, Vol. m18 (Springer-Verlag, Berlin, 1993).
    [49] G. Lindblad, Commun. Math. Phys. 48 119 (1976).
    [50] Gorini, Kossakowski, Sudarshan, J. Math. Phys. 17, 821 (1976).
    [51] M. A. Cazalilla and J. B. Marston, Phys. Rev. Lett. 88, 256403 (2002).
    [52] C. Karrasch, R. Hedden, R. Peters, Th. Pruschke, K. Schonhammer3 and V. Meden, J. Phys. Condens. Matter 20, 345205 (2008).
    [53] P. W. Anderson, Phys. Rev. 124, 41 (1961) .
    [54] H. Grabert and M. H. Devoret, Single Charge Tunneling:Coulomb Blockade Phenomena in Nanostructures Plenum Press, New York, 1992.
    [55] L. P. Kouwenhoven et al., in Mesoscopic Electron Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G. SchÄon Kluwer, Dordrecht, 1997, pp. 105.
    [56] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).
    [57] S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996).
    [58] A. Groshev, Phys. Rev. B 42, 5895 (1990).
    [59] H. U. Baranger, D. Ullmo, and L. I. Glazman, Phys. Rev. B 61, R2425 (2000).
    [60] S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540(1998).
    [61] D. Goldhaber-Gordon, H. shtrikman, D.Mahalu, D. Abusch-Magder, U. Meirav, M. A. Kastner, Nature 391, 156 (1998).
    [62] D. Goldhabe-Gordon, J. GÄores, M. A. Kanstner, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. Lett. 81, 5225 (1998).
    [63] W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, and L. P. Kouwenhoven, Science 289, 22 (2000).
    [64] M. H. Devoret and R. J. Schoelkopf, Nature (London) 406, 1039 (2000).
    [65] Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959).
    [66] G. Hackenbroich, Phys. Rep. 343, 453 (2001).
    [67] F. Li, X. Q. Li, W. M. Zhang, and S. A. Gurvitz, Euro. Phys. Lett. 88, 37001 (2009).
    [68] M. W. Y. Tu, W. M. Zhang, and J. S. Jin, Phys. Rev. B 83, 115318 (2011).
    [69] S. Bedkihal, and D. Segal, Phys. Rev. B 85, 155324 (2012).
    [70] M. W. Y. Tu, W. M. Zhang, J. S. Jin, O. E. Wohlman, A. Aharony, arXiv:1205.0123(2012).
    [71] M. W. Y. Tu, W. M. Zhang, and F. Nori, arXiv:1204.5931 (2012).
    [72] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74, 4047(1995); R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, Nature (London) 385, 417 (1997).
    [73] A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, Phys. Rev. Lett. 87, 256802 (2001).
    [74] M. Sigrist, T. Ihn, K. Ensslin, D. Loss, M. Reinwald, and W. Wegscheider, Phys. Rev. Lett. 96, 036804 (2006).
    [75] T. Hatano, T. Kubo, Y. Tokura, S. Amaha, S. Teraoka, and S. Taruch, Phys. Rev. Lett. 106, 076801 (2011).

    下載圖示 校內:2014-07-01公開
    校外:2014-07-01公開
    QR CODE