| 研究生: |
陳興加 Chen, Hsing-Chia |
|---|---|
| 論文名稱: |
複合材料應用於風車葉片之研究 A Study of the Wind Turbine Blade Using Advanced Composite Materials |
| 指導教授: |
鄭泗滄
Jenq, Syh-Tsang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 風車葉片 、複合材料 、有限元素分析 、自然頻率 、變形結構 |
| 外文關鍵詞: | structure deflection, nature frequency, FEA, composite material, wind turbine blade |
| 相關次數: | 點閱:92 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的為1.5MW複合材料風車葉片於穩定運轉期間之結構與自然頻率分析。程序中將引用美國國家再生能源實驗室NREL 所發展之FASTv6.0風車模擬程式,以輸出1.5MW、3個葉片、上風式、水平軸式風車的相關運轉資訊,再從FAST輸出資訊中轉換獲得該葉片運轉期間所承受之等效力和等效力矩等負載,以提供ANSYS有限元素分析軟體之風車葉片模型進行變形量分析。經比對FAST及ANSYS兩種分析程式之複材葉片尖端變形量,發現有相當不錯之結果。文中並分析同規格之玻璃纖維、碳纖維及6063鋁合金三種材質風車葉片自然振動頻率,藉以討論不同材質葉片對風車運轉特性之影響。
經由上述的方法,將可以提供風車設計者先行預判葉片穩定運轉期間之受力變形情況及自然振動模態外型與頻率,有效降低實體測試之成本。
The main purpose of this thesis is to analyze the structure condition and the nature frequency of a 1.5MW composite material wind turbine blade during steady state operation. During the analysis, we adopted a FASTv6.0 simulation code which was developed by NREL (National Renewable Energy Laboratory U.S.A) to extract the 1.5MW, three-blades, up-wind and horizontal-axis wind turbine model operating information. By transferring FAST code output file data, we then acquired the equivalent force and moment that could be imported to commercial FEA software-ANSYS for blade model structure deflection analysis. The code computed results were compared with that from FASTv6.0. We founded that the ANSYS results were in good agreement with FASTv6.0 results. Three different materials (i.e. Glass fiber composite, Carbon fiber composite and 6063 Aluminum alloy) were used as the turbine blade materials. The corresponding blade structure response and blade operation characteristics were also studied. Current analysis can be used to a wind turbine designer for predicting the blade deflection and the nature frequency during steady state operation and it saves the cost of full-scale testing for the huge 1.5MW wind turbine blade.
[1]Global Wind Energy Council(GWEC),“GLOBAL WIND POWER CONTINUES EXPANSION”03/04/2005, Global Wind Energy Markets
[2]行政院環保署“台灣風力發電的潛力”報告, 2001年
[3]“台灣強化塑膠會訊”, 2003年10月30日
[4]經濟部能源局,“94年能源政策白皮書 第86頁”2005年12月
[5]台灣電力公司開發處風工所,“吹動能源新契機談風力發電與再生能源”經濟部台電月刊第516期,2005年12月
[6]2002年全球碳纖維會議,”複合材料於風力發電上的應用”, Raleigh, NC, USA,2002年
[7]賴耿陽,”小型風車設計及製造”,復漢出版社有限公司,中華民國2001年3月
[8]Dayton A. Griffin,”Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades” SAND2002-1879, July 2002
[9]徐彬堯,” 風車葉片運動模擬與動態分析”, 國立成功大學航太研究所碩士論文,2005年1月
[10]康淵教授、陳信吉博士,“ANSYS入門”,全華科技圖書,ISBN 957-21-3734-4,92年3月
[11]顧宜,”複合材料”,新文京開發出版有限公司,2002年12月30日
[12]林育鋒,”複合材料在風力發電上的應用與發展”,強塑廣用新知,2004年
[13]LM Glasfiber,The supplier of blades for wind turbines, http://www.lmglasfiber.com/Technology/Design/Wing%20construction.aspx
[14]Dayton A. Griffin and Tomas D. Ashwill,”Alternative Composite Material for MegaWatt-Scale Wind Turbine Blades:Design Consideration and Recommended Testing”,Global Energy Concepts and Sandia National Laboratories , AIAA-2003-0696
[15]Ronald F. Gibson,”Principles of Composite Material Mechanics”,McGraw-Hill, Inc. ISBN 0-07-023451-5
[16]Jonson M. Jonkman, Marshall L. Buhl Jr.,”FAST User’s Guide”,National Renewable Energy Laboratory,Technical Report NREL/EL-500-38230 August 2005
[17]Jason Jonkman ,“An aeroelastic analysis code for horizontal-axis wind turbines,” online, National Wind Technology Center http://wind.nrel.gov/designcodes/simulators/fast/
[18]Conference , SAMPE 2000-Long Beach, CA May 21-25, 2000