| 研究生: |
盧立昕 Lu, Li-Hsin |
|---|---|
| 論文名稱: |
熱分解法合成硒化亞銅(Cu2Se)與硒化銦(In2Se3)奈米粒子及以固態反應法合成硒化銅銦(CuInSe2)粉末之研究 Synthesis of Cu2Se and In2Se3 nanoparticles by thermal decomposition method and formation of CuInSe2 powders with Cu2Se and In2Se3 via solid state reaction |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 硒化銅銦 、熱分解法 、奈米粒子 |
| 外文關鍵詞: | CuInSe2, Thermal decomposition method, Nano-particle |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硒化銅銦(CuInSe2,CIS)系列化合物為目前較具潛力之薄膜太陽能電池材料,其直接能隙非常接近太陽能光的波長範圍,且耐光裂化性質佳,實驗室中轉化效率已達17.6%。而目前硒化銅銦(CuInSe2)薄膜太陽能電池生產的方式仍以真空製程為主,例如蒸鍍法(Evaporation)與濺鍍法(Sputtering),不但操作成本昂貴,且不利於大面積生產。本研究則嘗試以非真空製程進行硒化銅銦(CuInSe2)與相關化合物的合成包含以熱分解法合成硒化亞銅(Cu2Se)與硒化銦(In2Se3),以及利用固態反應以硒化銦(In2Se3)與硒化亞銅(Cu2Se)為原料合成硒化銅銦(CuInSe2),觀察製程中的變化,並探討其反應的機制。
製備硒化亞銅(Cu2Se)時,主要探討不同的配位溶劑添加量,及起始原料預先溶解與否等參數,推測油胺(Oleylamine)之使用量較多時,可將多數的銅離子還原成Cu+,故較不易產生Cu3Se2之中間相,且當Se粉體未事先溶解時,反應系統中會同時不斷地出現成核與成長之反應,使得產物顆粒較大。若將CuCl事先溶解於油胺溶液,而Se粉體事先溶解於十八烯溶液(1-Octadecene)中(Process A),於250℃恆溫進行3小時反應便可成功獲得約20 nm左右之硒化亞銅(Cu2Se)奈米顆粒。
製備硒化銦(In2Se3)時,主要以調整不同之反應溫度與反應時間為實驗的參數,由XRD分析結果可發現當反應溫度為210℃,而反應時間低於3小時,或反應時間為1小時,反應溫度低於230℃時,容易出現閃鋅礦(Sphalerite)結構之產物,而提高反應時間至3小時或溫度至230℃以上後則會逐步轉換為纖鋅礦(Wurzite)結構之γ-In2Se3,且產物顆粒大小亦逐漸變大。推測纖鋅礦(Wurzite)結構硒化銦(γ-In2Se3)粉體之生成機制應有二種:分別為表面成核反應與界面成核反應。利用熱分解法於反應條件250℃、1小時下進行反應可成功獲得顆粒大小約為1~2 μm左右之γ-In2Se3。
利用熱分解法所產出之硒化銦(γ-In2Se3)與硒化亞銅(Cu2-xSe)為起始原料,以固態反應法合成硒化銅銦(CuInSe2)時,發現隨著反應時間逐漸延長,γ-In2Se3之繞射峰逐漸地消失,而CuInSe2之繞射峰則逐漸地增強。此外,當溫度升高時,可發現γ-In2Se3繞射峰的消失速率或CuInSe2繞射峰的增強速率明顯地提升。進一步分析其反應動力學之行為時,得到硒化銦(γ-In2Se3)消失之活化能約為122.5 kJ/mol,此數值與前人文獻中CuInSe2的生成活化能相近,而反應級數n大約= 0.5,且由TEM發現熱處理後之粉體多為接近與反應物Cu2-xSe顆粒大小相近之奈米粒子,因此本研究合成CuInSe2之反應機制推測為In3+離子擴散主導之一維擴散控制。
Copper indium diselenide (CuInSe2, CIS) and related materials are the promising candidates for photovoltaic applications due to their effectively light-absorbing property in thin-film solar cells. However, the widespread utilization of CIS based solar cells has been hindered by the high cost associated with vacuumed processes such as evaporation or sputtering.
In this study, the synthesis of Cu2Se, In2Se3 nano-particles using thermal decomposition method and CuInSe2 by solid state reaction method were investigated. For the synthesis of Cu2Se, the quantity of chelating solvent and pre-dissolving Se powder or not are the main variables. The results showed that the more oleylamine added, the fewer Cu3Se2 produced because oleylamine is a good reductant. Moreover, as Se powder was not pre-dissolved, the Cu2Se particle will grow rapidly. The Cu2-xSe nanoparticles ( about 20 nm) was obtained at 250oC for 3 h by thermal decomposition method as Se powder was pre-dissolved.
In the case of synthesizing In2Se3, the reaction time and temperature are the main variables. The results showed that as the reaction time was not long enough or temperature was not high enough, the intermediate phase, sphalerite, would be observed. The sphalerite structure would transform intoγ-In2Se3 (Wurzite structure) as the reaction time was prolonged or the temperature was raised. The particles ( about 1~2 μm) with singleγ-In2Se3 (Wurzite structure) phase can be obtained at 250oC for 1 h by thermal decomposition method.
Then formation activation energy formation of CuInSe2 powders using as-prepared Cu2-xSe andγ-In2Se3 as the raw materials via solid state reaction is about 122.5 kJ/mol and the reaction constant is about 0.5. Moreover, the particle size of the obtained CuInSe2 powders is closed to that of Cu2-xSe, suggesting that the mechanism of the formation of CuInSe2 by solid state reaction method may be one-dimensional diffusion of In3+ ions towardγ-In2Se3.
參考文獻
1.楊德仁、顏怡文,「太陽能電池材料」,五南圖書出版股份有限公司,台北2008.
2.J.P. Benner, "Inorganic Thin Films : Future Perspectives. Global Climate Energy Project," Solar Energy Workshop : Thin Film Photovoltaics (2004).
3.S.T. Lakshmikumar, and A.C. Rastogi, "Selenization of Cu and In Thin Films for the Preparation of Selenide Photo-Absorber Layers in Solar cells using Se Vapour Source," Sol. Energy Mater. Sol. Cells, 32, 7-19 (1994).
4.M. Lakshmi, K. Bindu, S. Bini, K.P. Vijayakumar, C.Sudha Kartha, T. Abe, and Y. Kashiwaba, "Chemical Bath Deposition of Different Phases of Copper Selenide Thin Films by Controlling Bath Parameters," Thin Solid Films, 370, 89-95 (2000).
5.C.H.d. Groot, and J.S. Moodera, "Growth and Characterization of a Novel In2Se3 Structure," J. Appl. Phys, 89, 8 (2001).
6.C. Julien, A. Chevy, and D. Siapkas, "Optical Properties of In2Se3 Phases," Phys. Stat. Sol.(a), 118, 553-559 (1990).
7.S. Marsillac, A.M. Combat-Marie, J.C. Berne:de, and A. Conan, "Experimental Evidence of the Low-Temperature Formation of γ-In2Se3 Thin Films Obtained by a Solid-State Reaction," Thin Solid Films, 288, 14-20 (1996).
8.J.P. Ye, S. Sodeda, Y. Nakamura, and O. Nittono, "Crystal Structure and Phase Transformation in In2Se3 Conpound Semiconductor," Jpn. J. Appl. Phys, 37, 4264-4271 (1998).
9.M. Yudasaka, T. Matsuoka, and K. Nakanishi, "Indium Selenide Film Formation by the Double-Source Evaporation of Indium and Selenium," Thin Solid Films, 146, 65-73 (1987).
10.N. Yamamoto , S. Ishida, and H. Horinaka, "Solid State Growth of CuInSe2 and CuInTe2," Jpn. J. Appl. Phys 28, 1780-1783 (1989).
11.W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd Edition, John Wiley and sons, New York 1991.
12.J.L. Shay, and J.H. Wernick, Ternary Chalcopyrite Semiconductors:Growth Electronic Properties And Applications, in Pergamon, New York, 1975.
13.J.C. Rife, R.N. Dexter, P.M. Bridenbaugh, and B.W. Veal, "Magnetoluminescence and Magnetoreflectance of the A Exciton of CdS and CdSe," Phys. Rev. B, 16, 4419 (1977).
14.W. Horig, H. Neumann, H. Sobotta, B. Schumann, and G. Kuhn, "The Optical Properties of CuInSe2 Thin Films," Thin Solid Films, 48, 67-72 (1978).
15.L.L. Kazmerski, M. Hallerdt, P.J. Ireland, R.A. Mickelsen, and W. S.Chen, "Optical properties and grain boundary effects in CuInSe2," J. Vac. Sci. Technol, A1, 395 (1983).
16.K. Loschke, and J. Baumgarten, "Applicability of Multiple Angle of Incidence Ellipsometry (MAI). Measurements to GaAs anodic oxide and GaP anodic oxide systems at the wavelength 632.8 nm," Krist. Tech, 13, 1235 (1978).
17.C. Rincon, J. Gonzalez, and G. Sanchez-Perez, "Optical Absorption of CuInSe2 in Bulk Single Crystal," Phys. Stat. Sol.(b), 108, K19-K22 (1981).
18.M. Krunks, O.Bijakina, T.Varema, V. Mikli, and E. Mellikov, "Structural and Optical Properties of Sprayed CuInS2 Films," Thin Solid Films, 338, 125-130 (1999).
19.李長健, 朱踐如與飛海東. 「CIS和CIGS薄膜太陽能電池研究」,太陽能學報, 17, 297 (1996).
20.R.W. Birkmire, and E. Eser, "Polycrytalline Thin Film Solar Cells: Present Status and Future Potential," Annu. Rev. Mater. Sci, 27, 625-653 (1997).
21.B. Li, Y. Xie, J.X. Huang, amd Y.T. Qian, "Sythesis by Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles," Adv. Mater, 11, 1456 (1999).
22.K.H. Kim, Y.G. Chun, B.O. Park, and K.H. Yoon, "Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route," Mater. Sci. Forum, 449-452, 273-276 (2004).
23.Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R.Agrawal, and H.W. Hillhouse, "Development of CuInSe2 Nanocrystal and Nanoring lnks for Low-Cost Solar Cells," Nano Lett, 8, 2982-2987 (2008).
24.H. Zong, Y. Li, Z. Zhu, C. Yang, and Y. Li. "A Facile Route to Synthesize Chalcopyrite CuInSe2 Nanocrystals in Non-Coordinating Solvent," Nanotechnology, 18, 025602 (2007).
25.J.S. Park, Z. Dong, S. Kim, and J.H. Perepezko, "CuInSe2 Phase Formation During Cu2Se/In2Se3 Interdiffusion Reaction," J. Appl. Phys. 87, 3683-3690 (2000).
26.T. Wada, and H. Kinoshita, "Rapid Exothermic Synthesis of Chalcopyrite-Type CuInSe2," J. Phys. Chem. Solids, 66, 1987-1989 (2005).
27.T. Wada, Y. Matsuo, S. Nomura, Y. Nakamira, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, "Fabrication of Cu(In,Ga)Se2 Thin Films by a Combination of Mechanochemical and Screen-Printing/Sintering Processes," Phys. Stat. Sol.(a) , 203, 2593-2597 (2006).
28.K.J. Bachmann, H. Goslowsky, and S. Fiechter, "The Phase Relations in the System Cu,In,Se." J. Cryst. Growth, 89, 160-164 (1988).
29.C.H. Chang, A. Davydov, B.J. Stambery, T.J. Anderson, in Proceedings of the 25th IEEE PVSC 849 (Proceedings of IEEE, 1996).
30.J. Parkers, R.D. Tomlinson, and M.J. Hampshire, "The Fabrication of P and N Type Single Crystals of CuInSe2," J. Cryst. Growth, 20, 315-318 (1973).
31.O. Madelung, M. Schulz, and H. Weiss, Landolt-Bornstein - Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1998).
32.V.Milman. "Klockmannite, CuSe: Structure, Properties and Phase Stability from ab Anitio Modeling," Acta Crystallogr. B, 58, 437-447 (2002).
33.Y. Zhang, Z.P. Qiao, and X.M. Chen, "Microwave-Assisted Elemental Direct Reaction Route to Nanocrystalline Copper Chalcogenides CuSe and Cu2Te," J. Mater. Chem, 12, 2747-2748 (2002).
34.V.M. Glazov, A.S. Pashinkin, and V.A. Fedorov, "Phase Equilibria in the Cu-Se System," Inorg. Mater, 36, 641-652 (2000).
35.W. Wang, P. Yan, F. Liu, Y. Geng, and Y. Qian, "Preparation and Characterization of Nanocrystalline Cu2–xSe by a Novel Solvothermal Pathway," J. Mater. Chem, 8, 2321-2322 (1998).
36.C. Heske, U. Winkler, H. Neureiter, M. Sokolowski, and R. Fink, "Preparation and Termination of Well-Defined CdTe(100) and Cd(Zn)Te(100) Surfaces," Appl. Phys. Lett, 70, 1022-1024 (1997).
37.O. Milat, Z. Vuˇci´c, and B. Ruˇsˇci´c, "Stoichiometric Cuprous Selenide," Solid State Ionics, 23, 37-47 (1987), Reference [1-3].
38.M. Oliveria, R.K. McMullan, and B.J. Wuensch, "Single Crystal Neutron Diffraction Analysis of the Cation Distribution in the High-Temperature Phases α-Cu2-xS, α-Cu2-xSe, and α-Ag2Se," Solid State Ionics, 28-30, 1332-1337 (1988).
39.K. Yamamoto, and S. Kashida, "X-ray Study of the Average Structures of Cu2Se and Cu1.8S in the Room Temperature and the High Hemperature Phases," J. Solid State Chem, 93, 202-211 (1991).
40.K.D. Machado, J.C. de Lima, T.A. Grandi, C.E. Campos, C.E. Maurmann, A.A. Gasperini, S.M. Souza, and A.F. Pimenta "Structural Study of Cu2ÿxSe Alloys Produced by Mechanical Alloying," Acta Crystallogr. B 60 (2004).
41.S. Kashida, and J. Akai, "X-ray diffraction and electron microscopy studies of the room-temperature structure of Cu2Se," J. Phys. C Solid State Phys, 21, 5329-5336 (1988).
42.O. Milat, Z. Vuˇci´c, and B. Ruˇsˇci´c, "Stoichiometric Cuprous Selenide," Solid State Ionics, 23, 37-47 (1987).
43.K.G. Liu, H. Liu, J.Y. Wang, and L. Shi, "Synthesis and Characterization of Cu2Se Prepared by Hydrothermal Co-reduction," J. Alloy Compd, 484, 674-676 (2009).
44.Z.T. Deng, M. Mansuripur, and A.J.Muscat, "Synthesis of Two-Dimensional Single-Crystal Berzelianite Nanosheets and Nanoplates with Near-Infrared Optical Absorption," J. Mater. Chem, 19, 6201-6206 (2009).
45.Y.X. Hu, M. Afzaal, M. Malik, and P.A.O'Brien, "Deposition of Copper Selenide Thin Films and Nanoparticles," J. Cryst. Growth, 297, 61-65 (2006).
46.Q.T. Wang, "Electrochemical Template Synthesis of Large-Scale Uniform Copper Selenides Nanowire Arrays," Mater. Lett, 63, 1493-1495 (2009).
47.A.Y. Zhang, Q. Ma, M.K Lu, G.G. Zhou, C.Z. Li, and Z.G. Wang "Nanocrystalline Metal Chalcogenides Obtained Open to Air: Synthesis, Morphology, Mechanism, and Optical Properties," J. Phys. Chem. C, 113, 15492-15496 (2009).
48.T.S. Li, S.P. Liu, Z.X. Lu, and Z.F. Liu, "Synthesis and Characterization of Cuprous Selenide Nanocrystals at Room Temperature," Chinese Chem. Lett, 18, 617-620 (2007).
49.F. Lin, G.Q. Bian, Z.X. Lei, Z.J. Lu, and J.Dai, "Solvothermal Growth and Morphology Study of Cu2Se Films," Solid State Sci, 11, 972-975 (2009).
50.S.B. Ambade, R.S. Mane, S.S. Kale, S.H. Sonawane, A.V. Shaikh and S.H. Han "Chemical Synthesis of P-Type Nanocrystalline Copper Selenide Thin Films for Heterojunction Solar Cells," Appl. Surf. Sci. 253, 2123-2126 (2006).
51.M.Z. Xue, M.Z. Xue, Y.N. Zhou, Z. Bin, Y. Le, Z. Hua, and Z.W. Fu, "Fabrication and Electrochemical Characterization of Copper Selenide Thin Films by Pulsed Laser Deposition," J. Electrochem. Soc. 153, A2262-A2268 (2006).
52.Z. Zainal, S. Nagalingam, and T.C. Loo, "Copper Selenide Thin Films Prepared Using Combination of Chemical Precipitation and Dip Coating Method," Mater. Lett, 59, 1391-1394 (2005).
53.H.M. Pathan, C.D. Lokhande, D.P. Amalnerkar, and T. Seth, "Modified Chemical Deposition and Physico-Chemical Properties of Copper(I) Selenide Thin Films," Appl. Surf. Sci. 211, 48-56 (2003).
54.余樹楨, 「晶體之結構與性質」, 渤海堂文化事業有限公司, 台北, 1987.
55.M. Emziane, S. Marsillac, and J.C. BerneÁde, "Preparation of Highly Oriented a-In2Se3 Thin Films by a Simple Technique," Mater. Chem. Phys, 62, 84-87 (2000), Reference [13].
56.C. Amory, J.C. Berne`de, and S. Marsillac, "Study of a Growth Instability of γ-In2Se3," J. Appl. Phys, 94, 10 (2003).
57.T. Ohtsuka, T. Okamoto, A. Yamada, and M. Konagai, "Mocular Beam Epitaxy and Characterization of Layered In2Se3 Films Grown on Slightly Misoriented (001) GaAs Substrates," Jpn. J. Appl. Phys, 38, 668-673 (1999).
58.D. Eddike, A. Ramdani, G. Brun, J.C. Tedenac, and B. Liautard, "Phase Diagram Equilibria In2Se3–Sb2Se3 Crystal Growth of the β-In2Se3 Phase (In1.94Sb0.06Se3)," Mater.Res. Bull, 33, 519-523 (1998).
59.P.C. Newman, "Ordering in AIII2BVI3 compounds," J. Phys. Chem. Solids, 23, 19-23 (1962).
60.P.C. Newman, "Crystal Structures of Adamantine Compounds," J. Phys. Chem Solids, 24, 45-50 (1963).
61.J. Jasinski, W. Swider, J. Washburn, and Z. Liliental-Weber, "Crystal Structure of k-In2Se3," Appl. Phys. Lett, 81, ,23 (2002).
62.A. Chaiken, K. Nauka, G.A. Gibson, H. Lee, and C.C. Yang, "Structural and Electronic Properties of Amorphous and Polycrystalline In2Se3 Films," J. Appl. Phys, 94, 4 (2003).
63.K.J. Chang, S.M. Lahn, Z.J. Xie, J.Y. Chang, W.Y. Uen, T.U. Lu, J.H. Lin, and T.Y. Lin, "The Growth of Single-phase In2Se3 by Using Metal Organic Chemical Vapor Deposition with AlN Buffer Layer," J. Cryst. Growth, 306, 283-287 (2007).
64.J.H. Park, M. Afzaal, M. Helliwell, M.A. Malik, P. O'Brien, and J. Raftery, "Chemical Vapor Deposition of Indium Selenide and Gallium Selenide Thin Films from Mixed Alkyl/Dialkylselenophosphorylamides," Chem. Mater, 15, 4205-4210 (2003).
65.H.J. Gysling, A.A. Wernberg, and T.N. Blanton, "Molecular Design of Single-Source Precursors for 3-6 Semiconductor Films : Control of Phase and Stoichiometry in Indium Selenide(InxSey) Film Deposited by A Spray MOCVD Process Using Single-Source Reagents," Chem. Mater, 4, 4 (1992).
66.J. Sandino, and G. Gordillo, "Determination of the Optical Constants of InxSey Thin Films Deposited by Evaporation and Coevaration," Surf. Rev. Lett, 9, 1687-1691 (2002).
67.M. Emziane, S. Marsillac, and J.C. BerneÁde, "Preparation of Highly Oriented a-In2Se3 Thin Films by a Simple Technique," Mater. Chem. Phys, 62, 84-87 (2000).
68.M. Emziane, and R.L. Ny, "Crystallization of In2Se3 Semiconductor Thin Films by Post-Deposition Heat Treatment. Thickness and Substrate Effects," J. Phys. D: Appl. Phys, 32, 1319-1328 (1999).
69.M. Emziane, S. Marsillac, J. Ouerfelli, J.C. Bernde, and R.L. Ny, "γ-In2Se3 Thin Films Obtained by Annealing Sequentially Evaporated In and Se Layers in Flowing Argon," Vacuum, 48, 871-878 (1997).
70.S.N. Sahu, "Preparation, Structure, Composition, Optical and Photoelectrochemical Properties of Vacuum Annealed In-Se Thin Films," Thin Solid Films, 261, 98-106 (1995).
71.H.T. El-Shair, and A.E. Bekheet, "Effect of Heat Treatment on the Optical Properties of In2Se3 Thin Films. J. Phys. D: Appl. Phys, 25, 1122-1130 (1992).
72.R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, "Raman Scattering in a-In2Se3 Crystals," Mater. Res. Bull, 36, 2577-2583 (2001).
73.Y. Cheng, T.J. Emge,and J.G. Brennan, "Pyridineselenolate Complexes of Copper and Indium: Precursors to CuSex and In2Se3," Inorg. Chem, 35, 7339-7344 (1996).
74.S.S. Zumdahl, and S.A. Zumdahl, Chemistry,in Houghton Mifflin Company, Boston 2007.
75.J.N. Park, J. Joo, S.K. Kwon, Y.J. Jang, and T.H. Hyeon, "Synthesis of Monodisperse Spherical Nanocrystals," Angew. Chem. Int. Edit 46, 4630-4660 (2007).
76.C.B. Murray, D.J. Norris, and M.G. Bawendi, "Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites," J. Am. Chem. Soc. 115, 8706-8715 (1993).
77.D.C. Pan, L.J. An, Z.M. Sun, W. Hou, Y. Yang, Z.Z. Yang, and Y.F. Lu "Sythesis of Cu#In#S Ternary Nanocrystals with Tunable Structure and Composition," J. Am. Chem. Soc, 130, 5620-5621 (2008).
78.K. Nose, Y. Soma, Takahisa and S. Otsuka-Yao-Matsuo, "Synthesis of Ternary CuInS2 Nanocrystals;Phase Determination by Complex Ligand Species," Chem. Mater, 21, 2607-2613 (2009).
79.W. Jander, "Reaktionen im Festen Zustande bie Hoheren Temperaturen," Z.Anorg. Allg. Chem. (in Ger) 163, 1 (1927).
80.A.M. Ginstling, and B.I. Brounshtein, "Concerning the Diffusion Kinetics of Reactions in Spherical Particles," J. Appl. Chem. USSR, 23, 1327 (1950).
81.G. Valensi, "Cinetique de I'Oxydation de Spherules et de Poudres Matallics." C. R. Hebd. Seances Acad. Sci. (in Fr.), 203, 309 (1936).
82.A. Putnis, Introduction to Mineral Sciences , Cambridge University Press, Cambridge 1992.
83.M. Lakshmi, K. Bindu, S. Bini, K.P. Vijayakumar, C.S. Kartha, T. Abe, and Y. Kashiwaba, "Reversible Cu2-xSe <~> Cu3Se2 Phase Transformation in Copper Selenide Thin Films Prepared by Chemical Bath Deposition," Thin Solid Films, 386, 127-132 (2001 ).
84.D. Lippkow, and H.H. Strehblow, "Structural Investigation of Thin Fulms of Copper-Selenide Electrodeposited at Elevated Temperatures," Electrochim. Acta, 43, 2131-2140 (1998).
85.A. Ghezelbash, and B.A. Korgel, "Nickel Sulfide and Copper Sulfide Nanocrystal Synthesis and Polymorphism," Langmuir, 21, 9451-9456 (2005).
86.H. Zhang,Y.Q. Zhang, J.X. Xue, and D. Yang, "Phase-Selective Synthesis and Self-Assembly of Monodisperse Copper Sulfide Nanocrystals," J. Phys. Chem. C, 112, 13390-13394 (2008).
87.Y.S. Xiong, J. Zhang, F. Huang, G.Q. Ren, W.Z. Liu, D.S. Li, C. Wang, and Z. Lin, "Growth and Phase-Transformation Mechanisms of Nanocrystalline CdS in Na2S Solution," J. Appl. Chem. C, 112, 9229-9233 (2008).
88.D. Wolf, and G. Miller, "Kinetics of CIS-Formation Studied in Situ by Thin Film Calorimetry," Thin Solid Films 361-362, 155-160 (2000).
89.S. Kim, W.K. Kim, R.M. Kaczynski, R.D. Acher, S. Yoon, T.J. Anderson, and O.D. Crisalle, "Reaction Kinetics of CuInSe2 Thin Films Grown From Bilayer InSe/CuSe Precursors," J. Vac. Sci. Technol, 2, A 23 (2005).
90.W.K. Kim, S. Kim, E.A. Payzant, S.A. Speakman, S. Yoon, R.M. Kaczynski, R.D. Acher, T.J. Anderson, O.D.Crisalle, S.S. Li, and V. Craciun, "Reaction Kinetics of a-CuInSe2 Formation from an In2Se3/CuSe Bilayer Precursor Film," J. Phys. Chem. Solids, 66, 1915-1919 (2005).
91.W.K. Kim, E.A. Payzant, S. Yoon, and T.J. Anderson, "In Situ Investigation on Selenization Kinetics of Cu-In Precursor Using Time-Resolved, High Temperature X-ray Diffraction," J. Cryst. Growth, 294, 231-235 (2006).
92.M. Purwins, A. Weber, P. Berwian, G. Muller, F.Hergert, S. Jost, and R. Hock "Kinetics of the Reactive Crystallization of CuInSe2 and CuGaSe2 Chalcopyrite Films for Solar Cell Applications," J. Cryst. Growth, 287, 408-413 (2006).
校內:2012-08-27公開