| 研究生: |
黃國誠 Huang, Guo-Cheng |
|---|---|
| 論文名稱: |
導電性高分子-金屬奈米複合材料之合成與物性研究 Synthesis and Characterization of Composite Consisting of Metal Nanoparticles and Conducting Polymers |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 導電性高分子 、金屬奈米粒子 、奈米複合材料 |
| 外文關鍵詞: | conducting polymers, metal nanoparticles, nanocomposite |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文主要是合成導電性高分子與金屬奈米粒子的複合材料,並作各種材料與物性分析。研究分為兩個部分,首先合成銀奈米粒子-聚2,5-二甲氧苯胺複合材料,並探討不同氧化劑中的陰離子對聚2,5二甲氧苯胺-銀粒子複合材料特性之影響。第二部分合成奈米聚苯胺纖維-金屬粒子複合材料,並對複合材料作材料與物性分析。
在第一部分實驗中,將氧化劑AgNO3或CH3SO3Ag加入含有DMA的PSS水溶液中,可以容易地製備出PDMA-PSS-Ag複合材料。由in-situ UV-Visible光譜、傅利葉紅外線光譜和化學分析電子光譜等實驗結果,利用CH3SO3Ag作為氧化劑,聚合成長速率較快,副產物較少,而且PDMA-PSS-Ag複合材料的氧化程度較高,顯示CH3SO3Ag是比AgNO3更好的氧化劑。這是由於NO3 -和PDMA容易發生副反應,CH3SO3Ag -則會摻雜PDMA形成穩定的產物。而兩種氧化劑AgNO3和CH3SO3Ag,對銀奈米粒子的大小沒有明顯的影響。
在第二部分實驗中,以苯胺為單體,CH3SO3Ag或H2PtCl6當作金屬前驅物,並且用HCl或MSA為摻雜物,利用介面聚合法及照射UV光,可以成功合成出奈米聚苯胺纖維-金屬粒子複合材料,聚苯胺纖維的直徑大約為10~40 nm,而金屬粒子的粒徑大約為5~10 nm。而不同的金屬前驅物CH3SO3Ag或H2PtCl6,並不會對奈米聚苯胺纖維-金屬粒子複合材料的氧化程度造成明顯的影響。奈米聚苯胺纖維-金屬粒子複合材料的熱穩定性比聚苯胺纖維還要好,而且含有白金粒子的奈米複合材料比含有銀粒子的奈米複合材料還要穩定。另外,奈米聚苯胺纖維-白金粒子奈米複合材料對甲醇有催化的效果,中毒現象也不嚴重,有機會作進一步的研究和應用。
Abstract
The main objective of the present investigation is to synthesize and characterize the nanocomposites consisting of metal particles and conducting polymers. Aniline or 2,5-dimethoxyaniline(DMA) is used as monomer. AgNO3, CH3SO3Ag or H2PtCl6 is used as oxidant or precursor of metal.
First, PDMA-Ag composite is successfully obtained by oxidative polymerization of DMA in poly(styrene sulfonic acid)(PSS) using AgNO3 or CH3SO3Ag as oxidant. In-situ UV-Vible spectroscopy results show that the growth rate of PDMA is strongly affected by NO3 - and CH3SO3 -. The coupling reaction of PDMA and NO3 – was proposed to explain the lower growth rate of PDMA and by using AgNO3 than CH3SO3Ag as oxidant. X-ray photoelectron spectroscopy and FTIR spectroscopy were used to validate the proposed coupling reaction by monitoring the side product and oxidant state of PDMA. The results show that there are more side products and lower oxidized states for the composite structure in the presence of NO3 – than CH3SO3 -, being agreeable to the proposal. Transmission electron microscopy shows that Ag nanoparticles have almost the same size irrespective of anions.
Second, composite consisting of Ag or Pt particles and polyaniline nanofibers is successfully obtained by interfacial polymerization and illuminate UV light. CH3SO3Ag or H2PtCl6 is used as precursor of metal. Transmission electron microscopy shows that the polyaniline nanofibers are about 10~40 nm, Ag or Pt particles are about 5~10 nm. Nanocomposites are characterize by FTIR spectroscopy and Thermal Gravimetric Analysis. The result show that the oxidized states almost the same size irrespective of oxidant or precursors of metals. And nanocomposites are more thermal stable than polyaniline nanofibers. The composite consisting of Pt particles can also use as catalyst to oxidant methanol.
參考文獻
1. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J.
Louis, S. C. Gua and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
2. T. P. McAndrew, TRIP., 5, 7 (1997).
3. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J.
Chem. Soc. Chem. Commun. 16, 578 (1977).
4. S. Lefrant, L. S. Lichtman, M. Temkin, D. C. Fichten, D. C. Miller, G. E.
Whitwell, J. M. Burlich, Solid State Commun., 29, 191 (1979).
5. H. Shirakawa, Angew. Chem. Int. Ed., 40, 2574 (2001).
6. A. G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001).
7. A. J. Heeger, Angew. Chem. Int. Ed., 40, 2591 (2001).
8. Y. Wei, J. Tan, A. G. MacDiarmid, J. G. Masters, A. L. Smith and D. Li,
JCSCC, 7, 552 (1994).
9. E. M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 189 (1987).
10. K. Sasaki, M. Kaya. J. Yano, A. Kitani and A. Kunai, J. Electroanal.
Chem., 215, 401 (1986).
11. Y. Wei, X. Tang, Y. Sun and W. W. Focke, J. Polym. Sci. Chem. Edn., 27,
2385 (1989).
12. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem.,
Interfacial Electrochem., 177, 281 (1984).
13. M. Kancko, H. Nagamura and T. Shimora, Makromol. Chem., Rapid Commun., 8,
179 (1987).
14. Y. Cao, A. Andreatta, A. J. Heeger, and P. Smith, Polymer, 30, 2305 (1989).
15. A. G. MacDiarmid, S. K. Manohar, J. C. Masters, Y. Sun, H. Weis and A. J.
Epstein, Synth. Met., 41-43, 621 (1991).
16. K. Tzou and R. V. Gregory, Synth. Met., 47, 267 (1992).
17. Y. Wei, G.-W. Jang and C. C. Chan, J. Polym. Sci. Part-C. Polymer Letters,
28, 219 (1990).
18. Y. Wei, K. F. Hsueh and G.-W. Jang, Polymer, 35, 3572 (1994).
19. J. Stejskal, P. Kratochvil, and M. Spirkova, Polym., 36, 4135 (1995).
20. N. Gospodinova, L. Terlemezyan, P. Mokreva and K. Kossev, Polymer, 34,
2434 (1993).
21. N. Gospodinova, P. Mokreva and L. Terlemezyan, Polymer, 36, 3585 (1995).
22. J. Preiza, I. Lundstrom and T. Skothiem, J. Electrochem. Soc., 129, 1685
(1982).
23. S. L. Mu and D. H. Sun, Synth. Met., 41-43, 3085 (1991).
24. H. J. Yang and A. J. Bard, J. Electroanal. Chem., 369, 193 (1994).
25. D. E. Stilwell and S. M. Park, J. Electrochem. Soc., 135, 2254 (1988).
26. S. L. Mu and J. Q. Kan, Electrochim. Acta, 41, 1593 (1996).
27. T. J. Kemp, P. Moore and G. R. Quick, J. Chem. Res., 1981, 301 (1981).
28. A. Malinauskas and R. Holze, Electrochim. Acta, 44, 2613 (1999).
29. A. Malinauskas and R. Holze, Ber. Besenges. Phys. Chem., 101, 1859 (1997).
30. A. Malinauskas and R. Holze, Electrochim. Acta, 43, 2413 (1998).
31. D. M. Mohilner, R. N. Adams and W. J. Argersinger, J. Am. Chem. Soc., 84,
3618 (1962).
32. J. Bacon and R. N. Adams, J. Am. Chem. Soc., 90, 6596 (1968).
33. A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 111, 111 (1980).
34. R. A. Cox and E. Buncel, in The Chemistry of Hydrazo, Azo and Azoxy
Groups, S. Patel Ed., Wiley, New York, Part 2., P775 (1975).
35. E. M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 199 (1987).
36. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L.
D. Somasiri, W. Wu and S. I. Yaniger, Mol. Liqu. Cryst., 121, 173 (1985).
37. T. Hjertberg, W. R. Salanek, I. Lundstrom, N. L. D. Somasiri and A. G.
MacDiarmid, J. Polym. Sci., Polym. Lett., 23, 503 (1985).
38. H. Yoon, B. S. Jung and H. Lee, Synth. Met., 41, 699 (1991).
39. W. W. Focke, C. E. Wnek and Y. Wei, J. Phys. Chem., 91, 5813 (1987).
40. 黃黎明,”聚(2,5-二甲氧苯胺)之電致變色及電性研究”,國立成功大學化學系博士
論文 (2004).
41. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay,
R. H. Friend, P. L. Burn, A. B. Holomes, Nature 347, 539 (1990).
42. A. J. Heeger, Synth. Met. 57, 3471 (1993).
43. 林景正、賴宏仁,”奈米材料技術與發展趨勢”,9 (1999).
44. 管傑雄、孫啟光,”奈米光電”,經濟部工業局,p-24 (2002).
45. 劉仲明、郭東瀛,”奈米材料”,經濟部工業局,p-32 (2002).
46. 尤如瑾等,”微奈米技術於電機能源產業之應用研究”,經濟部技術處,p 5-1
(2002).
47. 黃文魁等,”兩岸奈米無機粉體材料資源與應用商機探討”,經濟部技術處,p 2-6
(2003).
48. 徐國財、張立德,”奈米複合材料”,化學工業出版社 (2002).
49. 黃俊益、吳春桂,”有機導電高分子/無機金屬氧化物複合材料的合成與性質探討.
(2001)
50. 蘇品書,超微粒子材料技術,復漢出版社 (1989).
51. 莊萬發,”操微粒子理論應用”,復漢出版社 (1995).
52. Boutonet, J. Colloid Interf. Sci. 148, 80 (1992).
53. W. P. Halperin, Rev. of modern Phys. 58, 532 (1986).
54. D. L. Feldhein, C. D. Keating, Chem. Soc. Rev. 27, 1 (1998).
55. Y. W. Du, J. Appl. Phys. 63, 4100 (1988).
56. L. Brus, Nature 351, 301 (1991).
57. H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri Appl. Phys.
Lett. 56, 2379 (1990).
58. 工研院工業材料研究所,”材料奈米科技專刊”,台北:經濟部技術處 (2001).
59. 柯揚船、皮特.斯壯、陳憲偉,”聚合物-無機奈米複合材料”,五南圖書出版股份有
限公司 (2004).
60. J. M. Gloaguen, J. M. Lefebvre, Polymer 42, 5841 (2001).
61. J. L. Leblance, J. Appl. Polym. Sc. 78, 1541 (2000).
62. B. R. Mayer, J. E. Mark, E. Colloid Polymer Sci. 275, 333 (1997).
63. Nanomaterials:synthesis, properties, and applications, Edelstein, A. S.
Bristol;/Institute of Physics Pub., (1996).
64. Giannelis, E. P. Adv. Mater. 8, 29 (1996).
65. S. Komarneni, J. Mater. Chem. 2, 1219 (1992).
66. R. Roy, S. Komameni, D. M. Roy, Mater. Res. Soc. Symp. Proc. 22, 347
(1984).
67. J. Wen, G. L. Wilkes, Chem. Mater. 8, 1667 (1996).
68. D. Y. Godovsky, Adv. Polym. Sci. 119, 79 (1995).
69. B. M. Novak, Adv. Mater. 5, 422 (1993).
70. R. Yokota, R. Horiuchi, M. Kochi, H. Soma, I. Mita, J. Polym. Sci.: Polym.
Letter 26, 215 (1988).
71. W. S. Shi, H. Y. Peng, L. Xi, et al. Adv. Mater. 12, 1927 (2000).
72. 王中林,”自然科學進展”, 10, 586 (2000).
73. M. J. Schwuger, K. Stickdorn, R. Schomaecker, Chem. Rev. 95, 849 (1995).
74. K. Landfester, M. Willert, M. Antonietti, Macromolecules 33, 2370 (2000).
75. P. Kent, B. R. Saunders, J. Colloid Interface. Sci. 242, 437 (2001).
76. W. Li, X. Sha, W. Dong, Z. Wang, Chem. Commun. 20, 2434 (2002).
77. M. S. Lee, G. D. Lee, S. S. Park, S. S. Hong, J. Ind. Eng. Chem. 9, 89
(2003).
78. C. J. Barbe, R. Graf, K. S. Finnie, M. Blackford, R. Trautman and J. R.
Bartlett, J. Sol-Gel Sci Technol. 26, 457 (2003).
79. X. Li, C. K. Loong, P. Thiyagarajan, G. A. Lager, R. Miranda, J. Appl.
Crystallography 33, 628 (2000).
80. T. Tado, T. Hatsuta, K. Miyajima, J. Am. Ceran. Soc. 85, 2188 (2002).
81. M. Fernandez, A. Martinez-Arias, A. Iglesias-Juez, A. B. hungria, A.
Anderson, J. C. Conesa, J. Soria, Appl. Catal. B. 31, 39 (2001).
82. M. Li and S. Mann, Adv. Mater. 12, 773 (2002).
83. G. Decher, Science 277, 1232 (1997).
84. S. T. Dubas, J. B. Schlenoff, Macromolecules 32, 8153 (1999).
85. S. S. Shiratori, M. F. Rubner, Macromolecules 33, 4213 (2000).
86. D. M. DeLongchamp, P. T. Hammond, Chem. Mater. 15, 1165 (2003).
87. T. C. Wang, M. F. Rubner, R. E. Cohen, Langmuir 18, 3370 (2002).
88. D. G. Shchukin, I. L. Radtchenko, G. B. Sukhoruov, Chem. PhysChem. 4, 1101
(2003).
89. D. G. Shchukin, E. Ustinovich, D. V. Sviridov, Y. M. Lvov, G. B.
Sukhorukov, Photochem. Photobiol. Sci. 2, 975 (2003).
90. J. Zhang, S. Xu, E. Kumacheva, J. Am. Chem. Soc. 126,7908 (2004).
91. A. Q. Zhang, C. Q. Cui, J. Y. Lee, F. C. Loh, J. Elecrochem. Soc., 142,
1097 (1995).
92. Z. Qi, P. G. Pickup, Chem. Commun. 1, 15 (1998).
93. 謝志軒、陳東煌,”Ni/PMMA奈米複合材料之製備”,國立成功大學化學系碩士論文
(2001).
94. 吳思翰、陳東煌,”金屬及金屬核殼型複合奈米粒子之製備”,國立成功大學化學系
碩士論文 (2004)
95. Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 121, 105 (1996).
96. X. Li, G. Lu, S. Li, J. Mater. Sci. Lett. 15, 397 (1996).
97. I. Capek, adv. Colloid interface sci. 110, 49 (2004).
98. H. Yamato, W. Wernet, M. Ohwa, B. Rotinger, Synth. Met. 55-57, 3550 (1993).
99. H. L. M. Jocowitz, D. R. Baer, M. H. Engelhand,J. Janatu, J. Electrochem.
Soc. 142, 798 (1995).
100. De, Risi, F. R.; D’Ilario, L.; Martinelli, A. J. Polym. Sci. Pol. Chem.
2004, 42, 3082.
101. Gok, A.; Sari, B.; J. Appl. Poly. Sci. 2002, 84, 1993.
102. Minami, H.; Okubo, M,; Murakami.; Hirano, S. J. Polym. Sci. Pol.
Chem.2000, 38, 4238
103. Jang, J.; Bae, ; Lee, K. Polym. 2005, 46 3677.
104. Sarma, T. K.; Chowduhry, D.; Paul, A.; Chattopadhyay, A. Chem. Commun.
2002, 1048.
105. Chowduhry, D.; Paul, A.; Chattopadhyay, A. J. Phys. Chem. B. 2002, 106,
4343.
106. H. L. M. Jocowitz, D. R. Baer, M. H. Engelhand,J. Janatu, J. Electrochem.
Soc. 142, 798 (1995).
107. R. Davies, G. A. Schurr, P. Meenan, R. D. Nelson, H. W. Bergna, C. A. S.
Brevet, R. H. Goldbaum, Adv. Mater. 10, 1264 (1998).
108. M. J. Croissant, T. Napporn, J. Leger, C. Lamy, Electrochim. Acta. 44,
4667 (1999).
109. S. Phadtare, A. Kumar, V. P. Vinod, C. Dash, D. V. Palaskar, M. Rao, P.
G. Shukala, S. Sivaram, M. Sastry, Chem. Mater. 15, 1944 (2003).
110. M. A. Bereimer, G. Yevgeny, S. Sy and O. A. Sadik, Nano Lett. 6, 305
(2001).
111. G. Tourillon, F. Garnier, J. Phys. Chem. 88, 5281 (1984).
112. Huang. L.; Tsai, C. C.; Wen T. C. ; Gopalan, A. J. Polym. Sci. A. in press
113. Duic, L.; Kraljic, M. Grigic, S J. polym. Sci. Pol. Chem. 2004,42 1599.
114. Chen. W. C.; Wen, T. C.; Hu, C. C.; Gopalan, A. Electrochem. Acta. 2002,
47, 1305.
115. Stiwell, D. E.; Park, S. M. J. Electrochem. Soc. 1988, 135, 2497.
116. Lei, J. T.; Cai, Z. H.; Martin, C R. Synth. Met. 1992, 46, 53.
117. Ribo, J. M.; Dicko, A.; Tura, J. M.; Bloor, D. Polym. 1991, 32, 728.
118. Eaves, J. G.; Munro, H. S.; Parker, D. Polym. Commun. 1988, 33, 839.
119. Kulkarni, M. V; Viswanath, A. K.; Marimuthu, R.; Seth, T. J. Polym. Sci.
Pol. Chem. 2004,42,2043.
120. Manisankar, P.; Vedhi, C Selvanathan, G. J. Polym. Sci. Pol. Chem.
2005,43, 1702.
121. Wei, Z. X.; Zhang, Z. M.; Wan, M. X. Langmuir 2002, 18, 917.
122. M. L. Liu, S. J. Visco and L. C. Dejonghe, J. Electrochem. Soc. 1991.
138, 1896.
123. M. M. Doeff, M. M. Lerner, S. J. Visco and L. C. Dejonghe, J.
Electrochem. Soc.1992, 139, 2077.
124. M. L. Liu, S. J. Visco, L. C. Dejonghe, J. Electrochem. Sco. 1991, 138,
1891.
125. C. R. Martin, Acc. Chem. Res., 1995, 28, 61–68.
126. M. J. Sailor and C. L. Curtis, Adv. Mater., 1994, 6, 688–692.
127. G. G. Wallace and P. C. Innis, J. Nanosci. Nanotechnol., 2002, 2, 441-451.
128. Wu, C. G.; Bein, T. Science 1994, 264, 1757.
129. Martin, C. R. Chem. Mater. 1996, 8, 1739.
130. Parthasarathy, R. V.; Martin, C. R. Chem. Mater. 1994, 6, 1627.
131. Wang, C. W.; Wang, Z.; Li, M. K.; Li, H. L. Chem. Phys. Lett.2001,341,431.
132. J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, J. Am. Chem.Soc.2003,125,
314.
133. J. Huang, R. B. Kaner, J. Am. Chem. Soc. 2004, 126, 851.
134. J. Huang, R. B. Kaner, Angew. Chem. Int. Ed. 2004, 43, 5817.
135. J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, Chem. Eur. J. 2004,
10, 1314.
136. J. Huang, R. B. Kaner, Chem. Commun., 2006, 367.
137. C. Mailherandolph, J. Desilvestro, J. Electroanal. Chem. 1989, 262, 289.
138. L. M. Huang, T. C. Wen, A. Gopalan. Mater. Lett., 2003, 57, 1765.