| 研究生: |
黃則勝 Huang, Tse-Sheng |
|---|---|
| 論文名稱: |
鐵金屬硫磷配位錯合物之仿生固氮反應 Biomimetic Nitrogen Fixation with Iron Complexes on a Tris(thiolato)phosphine Platform |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 氮氣還原 、硫配位基 、鐵錯合物 |
| 外文關鍵詞: | nitrogen reduction, thiolate, iron complex |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
之前我們實驗室已合成出多個鐵硫錯合物如[PPh4][FeII(PS3”)(CH3CN)] (1) (PS3” = [P(C6H3-3-Me3Si-2-S)3]3-),[PPh4][FeIII(PS3”)(OCH3)] (2),[PPh4][FeIII(PS3”)(Cl)] (3),[PPh4][Fe(PS3”)(NO)] (4)。他們都具有多硫配位基,與自然界固氮酵素的鉬鐵蛋白的鐵中心有相似的化學環境。在此篇研究我們加入大量還原劑與質子在氮氣下與錯合物進行反應,並觀察氨氣生成的量與文獻進行比較,嘗試找出反應的最佳條件使氨氣生成最大化。
除此之外,[PPh4][Fe(PS3”)(CH3CN)] (1)已經確認可以進行還原聯胺的催化反應,而且其中間產物之一的[NBu4][Fe(PS3”)(N2H4)]也被合成出來。聯胺(N2H4)是氮氣還原至氨氣反應中相當重要的中間產物,但是聯胺到氨氣中間的反應機制仍尚未明瞭。在這裡我們利用紫外光-可見光光譜、核磁共振光譜等光譜法研究其反應機構而更進一步獲得反應催化過程的資訊。除此之外,我們從催化反應中分離出一個鐵三價化合物[Fe(PS3”)(H2O)2] (5)。
先前我們實驗室合成了二價三價混合價數的雙鐵中心化合物 [P(Bn)Ph3][Fe2(PS3”)2] (6)。而在此研究中,我們合成並鑑定了三價三價化合物 [Fe2(PS3”)2] (7),化合物7可由化合物6在空氣中氧化而得。其化合物在空氣中為穩定的結構,以硫元素做為橋接,並且具有[Fe2S2]的中心結構。在這邊我們利用X-ray單晶繞射、紫外光-可見光光譜、核磁共振光譜、元素分析、與電噴灑游離質譜與循環伏安法詳細研究這些化合物並描述其結構與光譜。
We have synthesized several iron thiolato complexes in our lab, such as [PPh4][FeII(PS3”)(CH3CN)] (1) (PS3” = [P(C6H3-3-Me3Si-2-S)3]3-), [PPh4][FeIII(PS3”)(OCH3)] (2), [PPh4][FeIII(PS3”)(Cl)] (3) and [PPh4][Fe(PS3”)(NO)] (4). They have nitrogenase-like structure and the potential to catalytically reduce the dinitrogen to ammonia with reducing agents and protons. In this research we test their ability in catalytic reaction and find the best condition to get optimal yield of ammonia.
[PPh4][Fe(PS3”)(CH3CN)] (1) acts as a catalyst for the reduction of hydrazine to ammonia. The substrate bound adduct, [NBu4][Fe(PS3”)(N2H4)], in the catalytic pathway was also isolated. The detail of the mechanism is still not clear. In the research, spectroscopies such as UV-vis-NIR and NMR are used to monitor the catalytic cycles. The mechanistic insights are provided. In addition, an iron(III) complex, [Fe(PS3”)(H2O)2] (5) was isolated in the catalytic reaction at low temperature.
Previously, our lab has isolated a dimeric mixed-valence FeIIFeIII complex, [P(Bn)Ph3][Fe2(PS3”)2] (6). The FeIIIFeIII form of complex [Fe2(PS3”)2] (7) is isolated and characterized at this work. Complex 7 can be obtained by complex 6 with the explosure to the air. This air-stable complex has a [Fe2S2] core with two thiolato groups bridging between two iron centers.. Several physical methods such as X-ray diffraction, electronic spectroscopy, NMR spectra, elemental analysis, ESI-MS spectra and cyclic voltammograms have been used to characterize the complex.
References
1. Howard, J. B.; Rees, D. C., Structural basis of biological nitrogen fixation. Chem. rev. 1996, 96 (7), 2965-2982.
2. Alberty, R., Thermodynamics of the nitrogenase reactions. Journal of Biological Chemistry 1994, 269 (10), 7099-7102.
3. Eady, R. R., Structure− function relationships of alternative nitrogenases. Chem. rev. 1996, 96 (7), 3013-3030.
4. Einsle, O.; Tezcan, F. A.; Andrade, S. L.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C., Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 2002, 297 (5587), 1696-1700.
5. Georgiadis, M.; Komiya, H.; Chakrabarti, P.; Woo, D.; Kornuc, J.; Rees, D., Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 1992, 257 (5077), 1653-1660.
6. Hinnemann, B.; Nørskov, J. K., Modeling a central ligand in the nitrogenase FeMo cofactor. J. Am. Chem. Soc. 2003, 125 (6), 1466-1467.
7. Yang, T.-C.; Maeser, N. K.; Laryukhin, M.; Lee, H.-I.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M., The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J. Am. Chem. Soc. 2005, 127 (37), 12804-12805.
8. Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O., Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 2011, 334 (6058), 940-940.
9. Bjornsson, R.; Lima, F. A.; Spatzal, T.; Weyhermüller, T.; Glatzel, P.; Bill, E.; Einsle, O.; Neese, F.; DeBeer, S., Identification of a spin-coupled Mo (III) in the nitrogenase iron–molybdenum cofactor. Chemical Science 2014, 5 (8), 3096-3103.
10. Spatzal, T.; Schlesier, J.; Burger, E.-M.; Sippel, D.; Zhang, L.; Andrade, S. L.; Rees, D. C.; Einsle, O., Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nature communications 2016, 7.
11. Chatt, J.; Dilworth, J. R.; Richards, R. L., Recent advances in the chemistry of nitrogen fixation. Chem. rev. 1978, 78 (6), 589-625.
12. Seefeldt, L. C.; Hoffman, B. M.; Dean, D. R., Mechanism of Mo-dependent nitrogenase. Annual review of biochemistry 2009, 78, 701-722.
13. Leigh, G., Protonation of coordinated dinitrogen. Acc. Chem. Res. 1992, 25 (4), 177-181.
14. MacKay, B. A.; Fryzuk, M. D., Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem. rev. 2004, 104 (2), 385-402.
15. Leigh, G. J., So That's How It's Done--Maybe. Science 2003, 301 (5629), 55-56.
16. Sellmann, D.; Soglowek, W.; Knoch, F.; Moll, M., Nitrogenase Model Compounds:[μ‐N2H2 {Fe (“NHS4”)} 2], the Prototype for the Coordination of Diazene to Iron Sulfur Centers and Its Stabilization through Strong N H ⃛ S Hydrogen Bonds. Angew. Chem. Int. Ed. Engl. 1989, 28 (9), 1271-1272.
17. Sellmann, D.; Hennige, A., Direct Proof of trans‐Diazene in Solution by Trapping and Isolation of the Trapping Products. Angew. Chem. Int. Ed. 1997, 36 (3), 276-278.
18. Sellmann, D.; Hennige, A.; Heinemann, F. W., Transition metal complexes with sulfur ligands part CXXIX. Retention and reactivity of the [Fe NH NH Fe] chromophore in the iron sulfur diazene complex [μ-N 2 H 2 {Fe (PPr 3)(‘S 4’)} 2] in exchange and oxidation processes.(‘S 4’2−= 1, 2-bis (2-mercaptophenylthio) ethane (2−)). Inorganica chimica acta 1998, 280 (1), 39-49.
19. Sellmann, D.; Blum, D. C.; Heinemann, F. W., Transition metal complexes with sulfur ligands. Part CLV. Structural and spectroscopic characterization of hydrogen bridge diastereomers of [μ-N 2 H 2 {Fe (PR 3)(‘tpS 4’)} 2] diazene complexes (‘tpS 4’2−= 1, 2-bis (2-mercaptophenylthio) phenylene (2−)). Inorganica chimica acta 2002, 337, 1-10.
20. Sellmann, D.; Soglowek, W.; Knoch, F.; Ritter, G.; Dengler, J., Transition-metal complexes with sulfur ligands. 88. Dependence of spin state, structure, and reactivity of [FeII (L)('NH) S4')] complexes on the coligand L (L= CO, N2H2, N2H4, NH3, pyridine, NHCH3NH2, CH3OH, THF, P (OCH3) 3, P (OPh) 3): model complexes for iron nitrogenases ('NHS4'2-dianion of 2, 2'-bis [(2-mercaptophenyl) thio] diethylamine. Inorg. chem. 1992, 31 (18), 3711-3717.
21. Sellmann, D.; Shaban, S. Y.; Heinemann, F. W., Syntheses, Structures and Reactivity of Electron‐Rich Fe and Ru Complexes with the New Pentadentate Ligand Et2NpyS4− H2 {4‐(Diethylamino) 2, 6‐bis [(2‐mercaptophenyl) thiomethyl] pyridine}. Eur. J. Inorg. Chem. 2004, 2004 (23), 4591-4601.
22. Sellmann, D.; Utz, J.; Blum, N.; Heinemann, F. W., On the function of nitrogenase FeMo cofactors and competitive catalysts: chemical principles, structural blue-prints, and the relevance of iron sulfur complexes for N 2 fixation. Coordination chemistry reviews 1999, 190, 607-627.
23. Malinak, S. M.; Demadis, K. D.; Coucouvanis, D., Catalytic reduction of hydrazine to ammonia by the VFe3S4 cubanes. Further evidence for the direct involvement of the heterometal in the reduction of nitrogenase substrates and possible relevance to the vanadium nitrogenases. J. Am. Chem. Soc. 1995, 117 (11), 3126-3133.
24. Coucouvanis, D.; Mosier, P. E.; Demadis, K. D.; Patton, S.; Malinak, S. M.; Kim, C. G.; Tyson, M. A., The catalytic reduction of hydrazine to ammonia by the MoFe3S4 cubanes and implications regarding the function of nitrogenase. Evidence for direct involvement of the molybdenum atom in substrate reduction. J. Am. Chem. Soc. 1993, 115 (25), 12193-12194.
25. Chen, Y.; Zhou, Y.; Chen, P.; Tao, Y.; Li, Y.; Qu, J., Nitrogenase Model Complexes [Cp* Fe (μ-SR1) 2 (μ-η2-R2N NH) FeCp*](R1= Me, Et; R2= Me, Ph; Cp*= η5-C5Me5): Synthesis, Structure, and Catalytic N− N Bond Cleavage of Hydrazines on Diiron Centers. J. Am. Chem. Soc. 2008, 130 (46), 15250-15251.
26. Chang, Y.-H.; Chan, P.-M.; Tsai, Y.-F.; Lee, G.-H.; Hsu, H.-F., Catalytic reduction of hydrazine to ammonia by a mononuclear iron (II) complex on a tris (thiolato) phosphine platform. Inorg. chem. 2013, 53 (2), 664-666.
27. Čorić, I.; Mercado, B. Q.; Bill, E.; Vinyard, D. J.; Holland, P. L., Binding of dinitrogen to an iron-sulfur-carbon site. Nature 2015.
28. Creutz, S. E.; Peters, J. C., Diiron bridged-thiolate complexes that bind N2 at the FeIIFeII, FeIIFeI, and FeIFeI redox states. J. Am. Chem. Soc. 2015, 137 (23), 7310-7313.
29. Chatt, J.; Leigh, G., Nitrogen fixation. Chem. Soc. Rev. 1972, 1 (1), 121-144.
30. Khoenkhoen, N.; de Bruin, B.; Reek, J. N.; Dzik, W. I., Reactivity of Dinitrogen Bound to Mid‐and Late‐Transition‐Metal Centers. Eur. J. Inorg. Chem. 2015, 2015 (4), 567-598.
31. Arashiba, K.; Miyake, Y.; Nishibayashi, Y., A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nature chemistry 2011, 3 (2), 120-125.
32. Tanaka, H.; Arashiba, K.; Kuriyama, S.; Sasada, A.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y., Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia. Nature communications 2014, 5.
33. Kuriyama, S.; Arashiba, K.; Nakajima, K.; Tanaka, H.; Kamaru, N.; Yoshizawa, K.; Nishibayashi, Y., Catalytic formation of ammonia from Molecular dinitrogen by use of dinitrogen-bridged dimolybdenum–dinitrogen complexes bearing PNP-pincer ligands: Remarkable effect of substituent at PNP-pincer ligand. J. Am. Chem. Soc. 2014, 136 (27), 9719-9731.
34. Arashiba, K.; Kinoshita, E.; Kuriyama, S.; Eizawa, A.; Nakajima, K.; Tanaka, H.; Yoshizawa, K.; Nishibayashi, Y., Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybdenum–Nitride Complexes Bearing a Tridentate Triphosphine as Catalysts. J. Am. Chem. Soc. 2015, 137 (17), 5666-5669.
35. Kuriyama, S.; Arashiba, K.; Nakajima, K.; Matsuo, Y.; Tanaka, H.; Ishii, K.; Yoshizawa, K.; Nishibayashi, Y., Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. Nature Communications 2016, 7.
36. Anderson, J. S.; Rittle, J.; Peters, J. C., Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501 (7465), 84-87.
37. Creutz, S. E.; Peters, J. C., Catalytic reduction of N2 to NH3 by an Fe–N2 complex featuring a C-atom anchor. J. Am. Chem. Soc 2014, 136 (3), 1105-1115.
38. Del Castillo, T. J.; Thompson, N. B.; Suess, D. L.; Ung, G.; Peters, J. C., Evaluating molecular cobalt complexes for the conversion of N2 to NH3. Inorg. chem. 2015, 54 (19), 9256-9262.
39. Del Castillo, T. J.; Thompson, N. B.; Peters, J. C., A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench 57Fe Mössbauer Data, and a Hydride Resting State. J. Am. Chem. Soc. 2016, 138 (16), 5341-5350.
40. Buscagan, T. M.; Oyala, P. H.; Peters, J. C., N2‐to‐NH3 Conversion by a triphos–Iron Catalyst and Enhanced Turnover under Photolysis. Angew. Chem. Int. Ed. 2017, 56 (24), 6921-6926.
41. Ferraro, D. J.; Gakhar, L.; Ramaswamy, S., Rieske business: structure–function of Rieske non-heme oxygenases. Biochemical and biophysical research communications 2005, 338 (1), 175-190.
42. Albers, A.; Demeshko, S.; Dechert, S.; Saouma, C. T.; Mayer, J. M.; Meyer, F., Fast proton-coupled electron transfer observed for a high-fidelity structural and functional [2Fe–2S] Rieske model. J. Am. Chem. Soc. 2014, 136 (10), 3946-3954.
43. Bergner, M.; Dechert, S.; Demeshko, S.; Kupper, C.; Mayer, J. M.; Meyer, F., Model of the MitoNEET [2Fe− 2S] Cluster Shows Proton Coupled Electron Transfer. J. Am. Chem. Soc. 2017, 139 (2), 701-707.
44. Saouma, C. T.; Pinney, M. M.; Mayer, J. M., Electron transfer and proton-coupled electron transfer reactivity and self-exchange of synthetic [2Fe–2S] complexes: models for Rieske and mitoNEET clusters. Inorg. chem. 2014, 53 (6), 3153-3161.
45. Zanello, P., The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II.{[Fe 2 S 2](S γ Cys) 4} proteins. Coordination Chemistry Reviews 2014, 280, 54-83.
校內:2022-07-20公開