簡易檢索 / 詳目顯示

研究生: 李維德
Lee, Wei-Te
論文名稱: 以回溯最佳化求解具服務水準限制式之兩階層存貨問題
Using Retrospective Optimization to Solve a Two-Echelon Inventory Problem Subject to Service Level Constraints
指導教授: 蔡青志
Tsai, Shing-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 兩階層存貨系統銷售損失回溯最佳化模擬最佳化混整數最佳化
外文關鍵詞: Two-echelon inventory system, Lost sales, Retrospective optimization, Simulation optimization, Mixed-integer optimization.
相關次數: 點閱:131下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討兩階層存貨問題包含一個外部供應商、一個中心倉庫與多個零售商,供應鏈皆採用定期盤點制,中心倉庫負責下游所有零售商的補貨訂單,倉庫也定期盤點存貨並向外部供應商下訂單,需求發生於零售商端且與訂單前置期一樣為隨機變數。過往多數研究存貨問題的文獻為了分析上的可行或方便皆採用遇缺補貨假設居多,我們認為銷售損失假設更能反映真實零售市場的環境。而績效指標除了單位時間的成本外還包含存貨問題中最常見的服務水準。本研究接著指出許多文獻中用分析方法求解銷售損失假設下的存貨問題所遭遇的困境,並點出以模擬最佳化方法求解能打破許多非必要的假設限制等優勢。

    本研究將以回溯最佳化求解以下三個問題:(1)多重服務水準限制式之整數存貨問題、(2)單一服務水準限制式之整數存貨問題、(3)單一服務水準限制式之混整數存貨問題,找到一組滿足服務水準式下讓成本最小化的存貨策略。cgR-SPLINE為以梯度為基礎之離散型模擬最佳化方法,適合求解高維度且離散型決策變數的問題,以內外圈迭代的設計下,在廣大的解空間中有效率地朝品質佳的解前進,同時顧及演算法效率以及解的品質。但cgR-SPLINE的線性插值搜尋法在迭代解靠近可行解域邊界時,無法估計梯度向量,影響求解效率,因此本研究提出兩個方法來改善cgR-SPLINE。SFB方法是利用最佳解位於可行解域邊界的特性,繼續在邊界搜尋品質更佳的解,SPF則是利用懲罰函數將原問題轉換為無隨機限制式的問題,而實驗結果也顯示兩種方法對cgR-SPLINE皆有一定程度的改善,但SFB的改善效果比SPF更明顯。

    本研究繼續推展SFB的方法使其適用於單一服務水準限制式的混整數存貨問題,實驗結果顯示其求解效率要比OptQuest方法好,而目前文獻中沒有能處理具有隨機限制式的混整數模擬最佳化方法,本研究也在未來研究方向提出幾個具有發展潛力的方法。

    We consider a time-base inventory control policy for a two-echelon inventory system consisting of an external supplier, a central warehouse, and some retailers. The objective in the discrete optimization problem is to determine the order-up-to-levels at the warehouse and retailer locations and the replenishment interval at the warehouse that minimize a cost function, defined in terms of both holding cost and fixed ordering cost, subject to the service levels.

    In contrast to previous research, the two-echelon inventory system considered in our study with a lost-sales assumption and stochastic lead time is more realistic in many retail environments than its counterparts. There are few applications that consider lost-sales. One of the major reasons for this is that inventory models that include lost sales are more difficult to analyze and to perform computations on compared to backorder models. Simulation optimization is a potentially powerful and flexible tool for solving complex optimization problems, without the need to make restrictive assumptions.

    We use the cgR-SPLINE algorithm to solve the problems, and propose two new approaches based on this algorithm. First, the SFB algorithm takes advantage of the problem structure by searching around a feasibility boundary to find more quality solutions. Second, SPF transfers stochastic constraints into an objective function by using a penalty function. The empirical results show that both SFB and SPF are more efficient than cgR-SPLINE. We then extend the concept from SFB to the MISO algorithm, which can be used to solve the mixed-integer inventory problem with a single service level constraint.

    摘要................................................................................i 英文延伸摘要.................................................................ii 致謝...............................................................................vi 目錄..............................................................................vii 表目錄...........................................................................ix 圖目錄............................................................................x 第一章 緒論....................................................................1 1.1 研究背景與動機........................................................1 1.2 研究目的...................................................................2 1.3 研究貢獻...................................................................3 1.4 小結..........................................................................4 第二章 文獻探討..............................................................5 2.1 多階層存貨系統(Multi-Echelon Inventory System)....5 2.2 銷售損失模型(Lost-sales Models).............................8 2.3 服務水準限制(Service Level Constraints).................9 2.4 模擬最佳化(Simulation Optimization;SO)................13 2.5 回溯最佳化(Retrospective Optimization;RO)...........16 第三章 研究方法............................................................19 3.1 存貨問題與問題假設................................................19 3.2 運用模擬方法於存貨問題的優勢..............................29 3.3 離散型模擬最佳化演算法.........................................34 3.3.1 寬鬆樣本平均估計模型..........................................34 3.3.2 模擬最佳化演算法.................................................36 3.4 混整數兩階層存貨問題.............................................42 第四章 實驗結果與分析..................................................45 4.1 實驗情境設定...........................................................45 4.2 實驗評估..................................................................47 4.3 實驗設定與結果.......................................................47 4.3.1 離散型模擬最佳化問題.........................................48 4.3.2 混整數模擬最佳化問題.........................................62 第五章 結論與未來研究方向..........................................65 5.1 結論.........................................................................65 5.2 未來研究方向...........................................................66 參考文獻........................................................................68 A 附錄............................................................................75 A.1 副程式演算法...........................................................75

    蔡承恩 2015。以模擬最佳化求解具有等待時間限制式之安全檢查問題。國立成功大學工業與資訊管理系碩士論文。
    Alvarez, E., van der Heijden, M., 2014. On two-echelon inventory systems with Poisson demand and lost sales. European Journal of Operational Research 235, 334-338.
    Andersson, J., Melchiors, P., 2001. A two-echelon inventory model with lost sales. International Journal of Production Economics 69, 307-315.
    Andradottir, S., Kim, S.H., 2010. Fully sequential procedures for comparing constrained systems via simulation. Naval Research Logistics 57, 403-421.
    Axsäter, S., 1993. Exact and approximate evaluation of batch-ordering policies for two-level inventory systems. Operations Research 41, 777-785.
    Bashyam, S., Fu, M.C., 1998. Optimization of (s, S) inventory systems with random lead times and a service level constraint. Management Science 44, 243-256.
    Batur, D., Kim, S.H., 2010. Finding feasible systems in the presence of constraints on multiple performance measures. ACM Transactions on Modeling and Computer Simulation 20, 1-26.
    Bijvank, M., 2014. Periodic review inventory systems with a service level criterion. Journal of the Operational Research Society 65, 1853-1863.
    Bijvank, M., Johansen, S.G., 2012. Periodic review lost-sales inventory models with compound Poisson demand and constant lead times of any length. European Journal of Operational Research 220, 106-114.
    Bijvank, M., Vis, I.F., 2011. Lost-sales inventory theory: A review. European Journal of Operational Research 215, 1-13.
    Bijvank, M., Vis, I.F., 2012. Lost-sales inventory systems with a service level criterion. European Journal of Operational Research 220, 610-618.
    Caglar, D., Li, C.L., Simchi-Levi, D., 2004. Two-echelon spare parts inventory system subject to a service constraint. IIE Transactions 36, 655-666.
    Chen, F.Y., Krass, D., 2001. Inventory models with minimal service level constraints. European Journal of Operational Research 134, 120-140.
    Chen, H., Schmeiser, B.W., 2001. Stochastic root finding via retrospective approximation. IIE Transactions 33, 259--275.
    Chen, F., Zheng, Y.S., 1997. One-warehouse multiretailer systems with centralized stock information. Operations Research 45, 275-287.
    Cheung, K.L., Lee, H.L., 2002. The inventory benefit of shipment coordination and stock rebalancing in a supply chain. Management Science 48, 300-306.
    Chick, S.E., Inoue, K., 2001. New two-stage and sequential procedures for selecting the best simulated system. Operations Research 49, 732-743.
    Feng, K., Rao, U.S., 2007. Echelon-stock (R, nT) control in two-stage serial stochastic inventory systems. Operations Research Letters 35, 95-104.
    Fu, M.C., Glover, F.W., April, J., 2005. Simulation optimization: A review, new developments, and applications, in: M.E. Kuhl, N.M. Steiger, F.B. Armstrong, J.A. Joines (Eds.), Proceedings of the 2005 Winter Simulation Conference, Piscataway, Institute of Electrical and Electronics Engineers, Inc., New Jersey, 2005, pp. 83–95.
    Gruen, T.W., Corsten, D., Bharadwaj, S., 2002. Retail out-of-stocks: A worldwide examination of extent causes and consumer responses. Grocery Manufacturers of America.
    Guijarro, E., Cardós, M., Babiloni, E., 2012. On the exact calculation of the fill rate in a periodic review inventory policy under discrete demand patterns. European Journal of Operational Research 218, 442-447.
    Hill, R.M., Seifbarghy, M., Smith, D.K., 2007. A two-echelon inventory model with lost sales. European Journal of Operational Research 181, 753-766.
    Hong, L.J., Nelson, B.L., 2006. Discrete optimization via simulation using COMPASS. Operations Research 54, 115-129.
    Huh, W.T., Janakiraman, G., Muckstadt, J.A., Rusmevichientong, P., 2009. Asymptotic optimality of order-up-to policies in lost sales inventory systems. Management Science 55, 404-420.
    Jalali, H., Nieuwenhuyse, I.V., 2015. Simulation optimization in inventory replenishment: a classification. IIE Transactions 47, 1217-1235.
    Janakiraman, G., Roundy, R.O., 2004. Lost-sales problems with stochastic lead times: Convexity results for base-stock policies. Operations Research 52, 795-803.
    Lee, L.H., Chew, E.P., Manikam, P., 2006. A general framework on the simulation-based optimization under fixed computing budget. European Journal of Operational Research 174, 1828-1841.
    Lee, L.H., Pujowidianto, N.A., Li, L.W., Chen, C.H., Yap, C.M., 2012. Approximate simulation budget allocation for selecting the best design in the presence of stochastic constraints. IEEE Transactions on Automatic Control 57, 2940-2945.
    Li, J., Sava, A., Xie, X., 2009. Simulation-based discrete optimization of stochastic discrete event systems subject to non closed-form constraints. IEEE Transactions on Automatic Control 54, 2900-2904.
    Moors, J.J.A., Strijbosch, L.W.G., 2002. Exact fill rates for (R, s, S) inventory control with gamma distributed demand. Journal of the Operational Research Society 53, 1268-1274.
    Nagaraj, K., Pasupathy, R., 2017. Stochastically constrained simulation optimization on integer-ordered spaces: The cgR-SPLINE algorithm. Operations Research, forthcoming.
    Ólafsson, S., 2006. Metaheuristics. In: Henderson, S.G., Nelson, B.L. (Eds.), Elsevier Handbooks in Operations Research and Management Science, Elsevier, pp. 633-654.
    Özdemir, D., Yücesan, E., Herer, Y.T., 2013. Multi-location transshipment problem with capacitated production. European Journal of Operational Research 226, 425-435.
    Park, C., Kim, S.H., 2015. Penalty function with memory for discrete optimization via simulation with stochastic constraints. Operations Research 63, 1195-1212.
    Pasupathy, R., Schmeiser, B.W., 2009. Retrospective-approximation algorithms for the multidimensional stochastic root-finding problem. ACM Transactions on Modeling and Computer Simulation, 19.
    Schwarz, L.B., 1989. A model for assessing the value of warehouse risk-pooling: risk-pooling over outside-supplier leadtimes. Management Science 35, 828-842.
    Sezen, B., 2006. Changes in performance under various lengths of review periods in a periodic review inventory control system with lost sales: A simulation study. International Journal of Physical Distribution Logistics Management 36, 360-373.
    Sherbrooke, C.C., 1968. METRIC: A multi-echelon technique for recoverable item control. Operations Research 16, 122-141.
    Tijms, H.C., Groenevelt, H., 1984. Simple approximations for the reorder point in periodic and continuous review (s, S) inventory systems with service level constraints. European Journal of Operational Research 17, 175-190.
    Tsai, S.C., Zheng, Y.X., 2013. A simulation optimization approach for a two-echelon inventory system with service level constraints. European Journal of Operational Research 229, 364-374.
    Wang, H., 2012. Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation. European Journal of Operational Research 217, 141-148.
    Wang, H., Pasupathy, R., Schmeiser, B.W., 2013. Integer-ordered simulation optimization using R-SPLINE: Retrospective search with piecewise-linear interpolation and neighborhood enumeration. ACM Transactions on Modeling and Computer Simulation 23, 17-24.
    Wang, Q., 2013. A periodic-review inventory control policy for a two-level supply chain with multiple retailers and stochastic demand. European Journal of Operational Research 230, 53-62.
    Wang, Q., Axsäter, S., 2010. Fixed-interval joint-replenishment policies for distribution systems with multiple retailers and stochastic demand. Naval Research Logistics 60, 637-651.
    Zhang, J., Bai, L., He, Y., 2010. Fill rate of general periodic review two-stage inventory systems. International Journal of Operational Research 8, 62-84.
    Zipkin, P., 2008. Old and new methods for lost-sales inventory systems. Operations Research 56, 1256-1263.

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE