簡易檢索 / 詳目顯示

研究生: 王志峮
Wang, Zhi-Qun
論文名稱: 以摻混分子馬達之膽固醇液晶智能材料製備可手性反轉及超寬頻調控之布拉格-貝瑞光渦流產生器
Ultra-broadband tunable and chirality invertible Bragg-Berry optical vortex generators based on molecular-motor-doped cholesteric liquid crystals
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 膽固醇液晶分子馬達光渦流平面相位元件
外文關鍵詞: cholesteric liquid crystal, chiral molecular motor, optical vortex, planar phase device
相關次數: 點閱:74下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著渦流光在近代光學中迅速崛起,各種應用接連出現,小到微米等級粒子的操控,大到太陽系外天文星體的觀察,其中又以近期在通訊上的應用最為亮眼,打破以往的傳輸極限,開創嶄新的加密可能性。當應用的概念漸趨成熟,穩定的渦流光來源就顯得重要,傳統的螺旋狀波板(spiral phase plate)以波板厚度控制光程差,過於厚重且功能單一,較後來出現的平面相位元件q-plate,以雙折射材料—液晶的軸向變化控制光程差,僅需薄薄數層液晶便可調控完整波長的光程,克服了元件厚重的問題,但須持續輔以電壓調控,且在同一時間對應的工作頻寬較窄。為了即將到來的各種應用,我們必須開發出穩定、輕便、工作頻寬廣,且具有更多功能調控性的平面相位元件。
    本論文將分子馬達材料摻混入膽固醇液晶封入具輻射狀配向之空玻璃樣品中,製成具有廣頻範圍調控性且可手性翻轉之光渦流產生元件。實驗中,經由不同強度的紫外光(吸收波峰在392 nm)照射後,此元件之反射波段可連續地由中心波長425 nm位移至紅外波段的850 nm,直至螺旋結構解螺旋,再經過旋性反轉後,反射波段又可逐漸藍移回復,可從850 nm逐漸移回475 nm處,分別涵蓋正反旋性425 nm與375 nm(於光譜儀可偵測最大頻譜範圍內)。關閉UV光之照射後,樣品將逐步逆向回復原先旋性與反射波段,此過程可透過加熱來提高速率。本實驗能夠製備出單一光學元件具備光子能隙之超廣頻可動態調控性與旋性可逆性,對於未來發展具備可多功能可動態調控之先進平面光學元件是相當重要的進展。
    本論文分成兩部分,第一部分探討樣品同時接受光與電壓刺激時光學特性(光子能隙)的變化,照紫外光可促使分子馬達做同分異構物歷程使整體旋性反轉,外加直流電壓使樣品升溫則促使其回復,兩者效應最後終將達到動態平衡。藉由改變紫外光強度與外加電壓大小可適當調整此平衡,使樣品穩定在特定旋性與波段。
    論文第二部分乃驗證此單一元件具備產生可寬頻波長變化與旋性反轉之渦流光。實驗中可透過麥克森干涉法,分別使用紅(633 nm)、綠(532 nm)、藍(488 nm)三原色雷射光球面與平面波進行干涉以檢驗經由此液晶光渦流產生器產生的渦流光輸出特性,實驗結果符合理論預測,證實此單一光渦流輸出元件確實可任意地調控其操作波長與旋性特性。

    This thesis demonstrates an advanced planar phase modulator called Bragg-Berry optical vortex generator (BBOVG) by filling chiral molecular motor doped liquid crystals into an indium-tin-oxide-coated glass cell, which is pretreated with azimuthal photo-alignment pattern. The material with a self-assembled helical structure along the pattern forms a BBOVG device, which possesses an ultra-broadband tunable photonic bandgap (PBG) and chirality invertibility. The PBG can be tuned through the full-visible region to near-infrared by UV light and applied DC voltage, in both left-handed and right-handed helical structures. The optical vortex properties of reflected beam at wavelengths of red (632.8 nm), green (532 nm), and blue (442 nm) are verified by Michelson interferograms.

    摘要 I Abstract III 誌謝 XVII 目錄 XVIII 圖目錄 XXI 表目錄 XXV 第一章 緒論 1 第二章 液晶基礎介紹 4 2.1 液晶簡介 4 2.1.1 液晶緣起 4 2.1.2 液晶相態的特性 4 2.2 液晶分類 6 2.2.1 熱致型液晶與溶致型液晶 6 2.2.2 圓盤狀液晶與長棒狀液晶 6 2.3 長棒狀液晶排列種類 7 2.3.1 向列型液晶 7 2.3.2 層列型液晶 8 2.3.3 膽固醇型液晶 11 2.4 液晶重要特性 12 2.4.1 秩序參數 12 2.4.2 雙折射性 12 2.4.3 介電異向性 18 2.4.4 折射率與溫度關係 20 2.4.5 連續彈性體 21 第三章 渦流光理論與產生及檢測方法 22 3.1 光子之角動量 22 3.1.1 光子之自旋角動量與軌道角動量 22 3.1.2 拉蓋爾-高斯光束 23 3.1.3 光子的軌道角動量 25 3.1.4 光子的自旋角動量 26 3.1.5 光子的總角動量 27 3.2 渦流光產生器 28 3.2.1 幾何相位 29 3.2.2 穿透式相位元件-q-plate 32 3.2.3 反射式相位元件-布拉格-貝瑞渦流光產生器 34 3.2.4 渦流光干涉檢測法 35 第四章 光致異構化材料簡介與液晶結合之效應 39 4.1 膽固醇液晶 39 4.1.1 膽固醇液晶之結構 39 4.1.2 膽固醇液晶樣品之製備 40 4.1.3 平面膽固醇液晶之光學特性 42 4.2 手性分子 44 4.2.1 手性分子分類 44 4.2.2 光致異構化材料 48 第五章 樣品製備與實驗架設 49 5.1 材料介紹 49 5.1.1 向列型液晶 49 5.1.2 手性分子馬達 50 5.2 樣品製作 54 5.2.1 藥品配方 54 5.2.2 光配向 54 5.3 實驗架設 56 5.3.1 光配向系統架設 56 5.3.2 反射頻譜量測系統架設 57 5.3.3 麥克森干涉儀架設 57 第六章 實驗結果與討論 59 6.1 以電光雙刺激調控分子馬達膽固醇液晶元件 59 6.1.1 電致熱樣品升溫效率量測 60 6.1.2 分子馬達膽固醇液晶元件之光子能隙動態變化 62 6.1.3 分子馬達膽固醇液晶元件之穩態特性的控制 69 6.2 以分子馬達膽固醇液晶製成之布拉格-貝瑞光渦流產生器 75 6.2.1 以光照強度調控元件產生各色渦流光 75 6.2.2 以光電雙刺激調控元件產生各色渦流光 78 第七章 結論與未來展望 80 7.1 結論 80 7.2 未來展望 81 參考文獻 82

    [1] R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry Phase of Light under Bragg Reflection by Chiral Liquid-Crystal Media,” Phys. Rev. Lett. 117, 053903 (2016).
    [2] P. Coullet, L. Gil, F. Rocca, “Optical vortices,” Opt. Commun. 73(5), 403-408 (1989).
    [3] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826‐829 (1995).
    [4] G. Foo, D. M. Palacios, G. A. Swartzlander, Jr., “Optical vortex coronagraph,” Opt. Lett. 30(24) 3308‐3310 (2005).
    [5] J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282‐286 (2008).
    [6] A. Rubano, F. Cardano, B. Piccirillo, and L. Marrucci, “Q-plate technology: a progress review [Invited],” JOSA B 36(5), 70-87 (2019).
    [7] M. Rafayelyan and E. Brasselet, “Bragg-Berry mirrors: reflective broadband q-plates,” Opt. Lett. 41(17), 3972-3975 (2016).
    [8] M. Rafayelyan, G. Agez, and E. Brasselet, “Ultra-broadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96, 043862 (2017)
    [9] P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commun. 10, 2518 (2019).
    [10] S. A. Jiang, C. C. Lai, Y. S. Zhang, J. D. Lin, W. C. Lin, X. L, Hsieh, and C. R. Lee, “Ultra-Broadband Tunable Bragg-Berry Optical Vortex Generators of a Circularly Symmetric Chiroptic Structure,” Adv. Optical mater. 2100746 (2021).
    [11] J. P. Sauvage, J. F. Stoddart, B. L. Feringa, “The Nobel Prize in Chemistry 2016,” RSAS press release (2016).
    [12] R. D. Astumian, “How molecular motors work – insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016”, Chem. Sci. 8, 840‐845 (2017).
    [13] K. Kawata, ”Orientation Control and Fixation of Discotic Liquid Crystal,” Chem. Rec. 2, 59‐80 (2002).
    [14] 楊怡寬, 郭蘭生, 鄭殷立, 液晶化學及物理入門, (偉明圖書有限公司, 2001,) Chap. 1.
    [15] M. J. Ma, S. G. Li, X. L. Jing, H. L. Chen, “Refractive indices of liquid crystal E7 depending on temperature and wavelengths,” Opt. Eng. 56(11), 117109 (2017).
    [16] A. Barcelo-Chong, B. Estrada-Portillo, A. Canales-Benavides, and S. Lopez-Aguayo, “Asymmetric Mathieu beams,” Chin. Opt. Lett. 16(12), 122601 (2018).
    [17] W. Z. Li, K. S. Morgan, Y. Li, K. Miller, G. White, R. J. Watkins, and E. G. Johnson, “Rapidly tunable orbital angular momentum(OAM) system for higher order Bessel beams integrated in time (HOBBIT),” Opt. Express 27(4), 3920‐3934 (2019).
    [18] H. R. Yang, H. J. Wu, W. Gao, C. Rosales-Guzman, and Z. H. zhu “Parametric upconversion of Ince-Gaussian modes,” Opt. Lett. 45(11), 3034‐3037 (2020).
    [19] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A, 45(11), 8185-8189 (1992).
    [20] J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
    [21] W. Gerlach, O. Stern, “Der experimentelle nachewis der richtungsquantelung im magnetfeld,” Z. Phys. 9, 349‐352 (1922).
    [22] R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Phys. Rev. 50, 115‐125 (1936).
    [23] S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. 44, 247‐262 (1956).
    [24] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. Math. Phys. Eng. Sci. 392(1802), 45‐57 (1984).
    [25] L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [26] L. Marrucci, “Generation of Helical Modes of Light by Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Liquid Crystals,” Mol. Cryst. Liq. Cryst. 488, 148‐162 (2008).
    [27] A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3, 161-204, (2011).
    [28] J. P. C. Narag, and N. P. Hermosa, “Probing higher OAM of LG beams via diffraction through translated single slit,” Phys. Rev. Applied 11, 054025 (2019).
    [29] L. E. E. de Araujo, and M. E. Anderson, “Measuring vortex charge with a triangular aperture,” Opt. Lett. 36(6) 787‐789 (2011).
    [30] A. Ambuj, E. Walla, S. Andaloro, S. Nomoto, R. Vyas, and S. Singh, “Symmetry in the diffraction of beams carrying orbital angular momentum,” Phys. Rev. A 99, 013846 (2019).
    [31] R. S. Chen, X. Q. Zhang, Y. Zhou, H. Ming, A. Wang, and Q. Zhan, “Detecting the topological charge of optical vortex beams using a sectorial screen,” Appl. Opt. 56(16), 4868‐4872 (2017).
    [32] Y. Taira, and S. K. Zhang, “Split in phase singularities of an optical vortex by diffraction through a simple circular aperture,” Opt. Lett. 42(7), 1373‐1376 (2017).
    [33] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, 1993), Chap. 6.
    [34] E. S. Lee, Y. Saito and T. Uchida, “Detailed Morphology of Rubbed Alignment Layers and Surface Anchoring of Liquid Crystals,” Jpn. J. Appl. Phys. 32, 1822‐1825 (1993).
    [35] K. Choudhary, R. K. Gupta, R. Pratibha, B. K. Sadashiva and V. Manjuladevi, “Alignment of liquid crystals using Langmuir-Blodgett films of unsymmetrical bent-core liquid crystals,” Liq Cryst 46(10), 1494‐1504 (2019).
    [36] E. S. Lee, P. Vetter, T. Miyashita, T. Uchida, M. Kano, M. Abe, and K. Sugawara, “Control of Liquid Crystal Alignment Using Stamped-Morphology Method,” Jpn. J. Appl. Phys. 32, L1436‐1438 (1993).
    [37] R. Ozaki, “Simple model for estimating band edge wavelengths of selective reflection from cholesteric liquid crystals for oblique incidence,” Phys. Rev. E 100, 012708 (2019).
    [38] J. D. Roberts, R. Stewart, M. C. Caserio, Organic chemistry: methane to macromolecules (N.Y.: W.A. Benjamin, Inc., 2003), Chap. 14.
    [39] M. Bansal, “DNA structure: Revisiting the Watson-Crick double helix,” Curr. Sci. 85(11), 1556‐1563 (2003).
    [40] R. Bentlry, “The Nose as a Stereochemist. Enantiomers and Odor,” Chem. Rev. 106, 4099‐4112 (2006).
    [41] T. Eriksson, S. Björkman, P. Höglund, “Clinical pharmacology of thalidomide,” Eur. J. Clin. Pharmacol 57, 365‐376 (2001).
    [42] M. Karras, “Synthesis of Enantiomerically Pure Helical Aromatics Such As NHC Ligands and Their Use in Asymmetric Catalysis,” Institutional Repository of the University of Potsdam, https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-421497 (2018).
    [43] M. Baroncini, G. Ragazzon, S. Silvi, M. Venturia, and A. Credi, “Azobenzene photoisomerization: and old reaction for activating new molecular devices and materials,” Photochemistry, 44, 296-323 (2017).
    [44] H. M. Dhammika Bandara, and S. C. Burdette, “Photoisomerization in different classes of azobenzene,” Chem. Soc. Rev. 41, 1809-1825 (2012).
    [45] B. L. Feringa, and W. R. Browne, “Macromolecules flex their muscles,” Nat. Nanotechnol. 3, 383‐384 (2008).
    [46] 莊崴程, “利用可高度操控分子馬達摻混於螺旋超結構發展可全波長調控與圓偏振反轉之新穎光子元件,” 國立成功大學光電研究所碩士論文(2020)。
    [47] R. Eelkema, and B. L. Feringa, “Reversible Full-Range Color Control of a Cholesteric Liquid-Crystalline Film by using a Molecular Motor,” Chem Asian J. 1(3), 367‐369 (2006).
    [48] V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14(4), 1‐15 (2005).
    [49] P. S. Chen, C. A. Jong, “Vacuum Process in Transparent Conductive Oxide Development-Composite Dielectric & Metal Stacking Layers for Transparent Conductive Electrode Application.” 科儀新知 210, 58‐67 (2017).
    [50] S. L. Ji, W. W. He, K. Wang, Y. X. Ran, and C. H. Ye, “Thermal Response of Transparent Silver Nanowire/PEDOT:PSS Film Heaters,” Small 10(23), 4951‐4960 (2014).
    [51] S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085‐4090 (2011).
    [52] M. Golbandi, A. Sabatyan, “Controlling and shaping topological charge by means of spiral petal-like zone plate,” Opt. Laser Technol. 134, 106574 (2021).
    [53] J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389‐393 (2016).

    下載圖示 校內:2023-07-27公開
    校外:2023-07-27公開
    QR CODE