簡易檢索 / 詳目顯示

研究生: 余東燊
Yu, Tung-Shen
論文名稱: 鐵酸鉍/鈦酸鋇三層電阻式記憶體在透明電極上之多級電阻切換行為
Multi-level Resistive Switching Behaviors in BiFeO3/BaTiO3 Trilayer-based ReRAM with the Transparent Electrode
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 81
中文關鍵詞: 電阻式記憶體鐵酸鉍鈦酸鋇三層結構多級儲存
外文關鍵詞: Resistive random access memory, BiFeO3, BaTiO3, Tri-layer ReRAM, Multi-level storage
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電阻式記憶體(ReRAM)由於具有結構簡單、低功耗、高耐久度、操作速度快與CMOS製程的高兼容性等特點,使其成為新興非揮發性記憶體中最具潛力的候選之一,近年來有許多研究顯示電阻式記憶體有應用於神經運算上的潛力,所以在未來AI與大數據的時代,電阻式記憶體必將是熱門的研究主題。
    本實驗使用磁控濺鍍系統將鐵酸鉍(BiFeO3)與鈦酸鋇(BaTiO3)薄膜沉積於ITO透明電極上,再利用電子束蒸鍍製備Ag做為上電極。實驗元件可分為單層切換層元件: Ag/BFO/ITO與Ag/BTO/ITO;以及三層切換層元件: Ag/BFO/BTO/BFO/ITO與Ag/BTO/BFO/BTO/ITO,為了測試三層切換層結構的穩定性,將下電極從ITO改變為FTO電極進行測試,藉由電性量測比較單層結構與三層結構ReRAM間的差異,實驗結果顯示使用三層切換層的ReRAM結構具有較高的耐久度與穩定性且在Reset過程中產生特殊的階梯型(Step-like)電流下降,階梯型的電流下降有助於實現ReRAM的多級(Multi-level)儲存功能,在電性分析中又以Ag/BFO/BTO/BFO/ITO與Ag/BTO/BFO/BTO/FTO的表現最為優秀,耐久度測試可維持1800次以上且具有良好(>103)的開關電流比(On/off ratio)。
    除了單層與三層結構的電性比較外,我們測試三層結構的多級儲存功能,實驗透過改變ReRAM Set過程的限制電流(Compliance Current)與Reset過程的停止電壓(Stop Voltage)來實現。當Set的限制電流的上升,ReRAM的低阻態電阻有下降的趨勢,而在Ag/BFO/BTO/BFO/ITO與Ag/BTO/BFO/BTO/FTO的結構中高阻態電阻也會隨之下降;當Reset的停止電壓上升時,高阻態的電流值會跟著下降,為了測試各個阻態間的穩定性,將低阻態與各個高阻態量測記憶保存時間(Retention time),結果顯示每種三層結構元件皆可穩定維持10000秒且各個高阻態間皆能清楚區別,顯示此三層結構ReRAM的穩定性與多級儲存能力。
    最後為了解ReRAM的薄膜傳導機制,我們將電流與電壓值分別進行對數處理並線性擬合,由擬合結果中得出薄膜傳導機制主要為歐姆傳導與空間電荷限制電流(SCLC)所主導。

    Resistive memory (ReRAM) is one of the most promising candidates for emerging non-volatile memories due to its simple structure, low power consumption, high durability, fast operation speed, and high compatibility with CMOS processes. In recent years, many studies have shown that resistive memory has the potential to be applied to neuromorphic computing; therefore, the applications of resistive memory have already found their way into the era of AI and big data in the future.
    In this work, a magnetron sputtering system was used to deposit bismuth ferrite (BiFeO3) and barium titanate (BaTiO3) thin films on ITO or FTO transparent electrodes. Electron beam evaporation was adopted to prepare Ag as the top electrode. The experiment can be divided into single switching layer devices, namely, Ag/BFO/ITO and Ag/BTO/ITO; as well as tri-layer devices including Ag/BFO/BTO/BFO/ITO and Ag/BTO/BFO/BTO/ITO. To test the stability of the tri-layer ReRAM, the bottom electrode was changed from ITO to FTO, and the difference between the single-layer and the tri-layer-based ReRAM was compared by electrical measurement. The results showed that the ReRAM structure using the tri-layer structure has higher durability and stability and has a special step-like current drop during the reset process. The multi-level storage function of ReRAM can be achieved via the step-like current drop characteristic. The electrical properties of the tri-layer Ag/BFO/BTO/BFO/ITO and Ag/BTO/BFO/BTO/FTO render the best performance. In particular, their endurance can last more than 1800 switching cycles and deliver an excellent (>103) current switching ratio.
    In addition to comparing the electrical parameters of the single-layer and tri-layer structures, the multi-level storage function of the tri-layer structure was tested. The experiment was realized by changing the compliance current of the ‘set’ process and the stop voltage of the ‘reset’ process. When the compliance current increases, the low-resistance state (LRS) resistance of ReRAM decreases, and the high-resistance state (HRS) resistance of Ag/BFO/BTO/BFO/ITO and Ag/BTO/BFO/BTO/FTO structures also decrease as well. On the other hand, when the stop voltage of ‘reset’ increases, the HRS current drops accordingly. To test the stability between each resistance state, the low resistance and high resistance states are used as criteria to measure the memory retention time, The results show that each tri-layer structure device can be stably maintained for 10,000 seconds and different resistance states can be distinguished from one another, which all evidently show the stability and multi-level storage capacity are well achieved with this three-layer structure ReRAM.
    Finally, to understand the conduction mechanism of ReRAM, the current and voltage characteristics are logarithmically fitted to discern different conduction mechanisms involved in switching. From the fitting results, the principal conduction mechanisms are mainly dominated by ohmic conduction and space charge limited current (SCLC).

    中文摘要 I SUMMARY III 誌謝 XXIV 目錄 XXV 表目錄 XXVIII 圖目錄 XXIX 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 2 第二章 文獻回顧 4 2.1 非揮發性記憶體簡介 4 2.1.1 電阻式記憶體(ReRAM) 6 2.2 電阻式記憶體之切換層材料簡介 8 2.2.1 鐵電材料(Ferroelectrics) 8 2.2.2 鈣鈦礦材料(Perovskite) 10 2.2.3 BiFeO3(BFO)簡介 11 2.2.4 BaTiO3(BTO)簡介 12 2.3 ReRAM電阻切換機制 14 2.3.1 電化學金屬化機制(Electrochemical Metallization Mechanism, ECM) 14 2.3.2 化合價變化機制(Valence Change Mechanism, VCM) 15 2.3.3 熱化學機制(Thermochemical mechanism, TCM) 16 2.4 多層(Multi-layer)結構電阻式記憶體與多級儲存(Multi-level Storage) 17 2.5 薄膜電流傳導機制 20 2.5.1 電極限制傳導機制(Electrode-Limited Conduction Mechanism) 20 2.5.2 本體限制傳導(Bulk-Limited Conduction Mechanisms) 23 第三章 實驗方法與儀器介紹 29 3.1 製程簡介 29 3.1.1 磁控濺鍍系統(Magnetron Sputtering) 29 3.1.2 電子束蒸鍍(Electron-beam Evaporator) 30 3.1.3 退火製程(Annealing) 31 3.1.4 X光繞射分析儀(XRD) 32 3.1.5 X射線光電子能譜學(X-ray photoelectron spectroscopy, XPS) 32 3.2 ReRAM製程 33 3.2.1 ReRAM下電極切割、清洗 33 3.2.2 ReRAM切換層 33 3.2.3 ReRAM上電極鍍製 34 第四章 量測結果與討論 36 4.1 BiFeO3與BaTiO3薄膜分析 36 4.1.1 XRD薄膜分析 36 4.1.2 XPS薄膜分析 37 4.2 ReRAM電性量測 40 4.2.1 ReRAM實驗結構 40 4.2.2 ReRAM量測流程 41 4.2.3 單層與三層結構ReRAM之I-V特性曲線 41 4.2.4 單層與三層結構ReRAM之開關電流比(On/Off Ratio) 54 4.2.5 單層與三層結構ReRAM之切換電壓 59 4.2.6 單層結構ReRAM之記憶保存時間(Retention Time) 62 4.3 三層結構ReRAM多級(Multi-level)測試 63 4.3.1 ReRAM多級測試-改變限制電流(Compliance Current) 63 4.3.2 ReRAM多級測試-改變停止電壓(Stop Voltage) 66 4.4 電流傳導機制與電阻切換機制討論 69 第五章 結論與未來工作 73 5.1 結論 73 5.2 未來工作 76 參考文獻 77

    [1] A. Sawa, "Resistive switching in transition metal oxides," Materials today, vol. 11, no. 6, pp. 28-36, 2008.
    [2] R. Khan, N. Ilyas, M. Z. M. Shamim, M. I. Khan, M. Sohail, N. Rahman, A. A. Khan, S. N. Khan, and A. Khan, "Oxide-based resistive switching-based devices: fabrication, influence parameters and applications," (in English), J. Mater. Chem. C, Review vol. 9, no. 44, pp. 15755-15788, Nov 2021.
    [3] H. S. P. Wong, H. Y. Lee, S. M. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, "Metal-Oxide RRAM," (in English), Proc. IEEE, Article vol. 100, no. 6, pp. 1951-1970, Jun 2012.
    [4] H. Wang and X. B. Yan, "Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanisms, Performance Optimization, and Prospects," (in English), Phys. Status Solidi-Rapid Res. Lett., Review vol. 13, no. 9, p. 12, Sep 2019.
    [5] T. Li, H. Yu, S. H. Y. Chen, Y. Zhou, and S.-T. Han, "The strategies of filament control for improving the resistive switching performance," J. Mater. Chem. C, vol. 8, no. 46, pp. 16295-16317, 2020.
    [6] R. Guo, L. You, Y. Zhou, Z. Shiuh Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, "Non-volatile memory based on the ferroelectric photovoltaic effect," Nature communications, vol. 4, no. 1, p. 1990, 2013.
    [7] M. Le Gallo and A. Sebastian, "An overview of phase-change memory device physics," Journal of Physics D: Applied Physics, vol. 53, no. 21, p. 213002, 2020.
    [8] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, and A. Padilla, "Phase change memory technology," Journal of Vacuum Science & Technology B, vol. 28, no. 2, pp. 223-262, 2010.
    [9] D. Apalkov, B. Dieny, and J. M. Slaughter, "Magnetoresistive random access memory," Proc. IEEE, vol. 104, no. 10, pp. 1796-1830, 2016.
    [10] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, vol. 21, no. 25-26, pp. 2632-+, Jul 2009.
    [11] D. Cui, Y. Du, Z. Lin, M. Kang, Y. Wang, J. Su, J. Zhang, Y. Hao, and J. Chang, "Coexistence of Bipolar and Unipolar Resistive Switching Behavior in Amorphous Ga 2 O 3 based Resistive Random Access Memory Device," IEEE Electron Device Letters, 2022.
    [12] P. Bousoulas, I. Michelakaki, E. Skotadis, M. Tsigkourakos, and D. Tsoukalas, "Low-power forming free TiO 2–x/HfO 2–y/TiO 2–x-trilayer RRAM devices exhibiting synaptic property characteristics," IEEE Transactions on Electron Devices, vol. 64, no. 8, pp. 3151-3158, 2017.
    [13] L. Wang, C. Yang, J. Wen, S. Gai, and Y. Peng, "Overview of emerging memristor families from resistive memristor to spintronic memristor," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 4618-4628, 2015.
    [14] P. M. Razi, S. Angappane, and R. Gangineni, "Bipolar resistive switching studies in amorphous barium titanate thin films in Ag/am-BTO/ITO capacitor structures," Materials Science and Engineering: B, vol. 263, p. 114852, 2021.
    [15] S. Sharma, M. Tomar, A. Kumar, N. K. Puri, and V. Gupta, "Enhanced ferroelectric photovoltaic response of BiFeO3/BaTiO3 multilayered structure," Journal of Applied Physics, vol. 118, no. 7, p. 074103, 2015.
    [16] H. Naganuma, "Multifunctional Characteristics of B-site Substituted BiFeO3 Films," Ferroelectrics-Physical Effects, 2011.
    [17] F. Zhang, M. Li, Y. Zhu, M. Zhao, S. Xie, M. Wei, Y. Li, Z. Hu, and M. Li, "Ferroelectric polarization enhancement of photovoltaic effects in BaTiO3/BiFeO3/TiO2 heterostructure by introducing double-functional layers," Journal of Alloys and Compounds, vol. 695, pp. 3178-3182, 2017.
    [18] J. H. Lee, M. A. Oak, H. J. Choi, J. Y. Son, and H. M. Jang, "Rhombohedral-orthorhombic morphotropic phase boundary in BiFeO3-based multiferroics: first-principles prediction," Journal of Materials Chemistry, vol. 22, no. 4, pp. 1667-1672, 2012.
    [19] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. Rossetti Jr, and J. Rödel, "BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives," Applied Physics Reviews, vol. 4, no. 4, p. 041305, 2017.
    [20] Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, "Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode," ACS nano, vol. 4, no. 10, pp. 6162-6168, 2010.
    [21] S. Yu, B. Lee, and H.-S. P. Wong, "Metal oxide resistive switching memory," Functional Metal Oxide Nanostructures, pp. 303-335, 2011.
    [22] M. J. Yu, K. R. Son, A. C. Khot, D. Y. Kang, J. H. Sung, I. G. Jang, Y. D. Dange, T. D. Dongale, and T. G. Kim, "Three Musketeers: demonstration of multilevel memory, selector, and synaptic behaviors from an Ag-GeTe based chalcogenide material," (in English), J. Mater. Res. Technol-JMRT, Article vol. 15, pp. 1984-1995, Nov-Dec 2021.
    [23] Z. H. Peng, F. C. Wu, L. Jiang, G. S. Cao, B. Jiang, G. Cheng, S. W. Ke, K. C. Chang, L. Li, and C. Ye, "HfO2-Based Memristor as an Artificial Synapse for Neuromorphic Computing with Tri-Layer HfO2/BiFeO3/HfO2 Design," (in English), Adv. Funct. Mater., Article vol. 31, no. 48, p. 8, Nov 2021.
    [24] Y. D. Xu, Y. P. Jiang, X. G. Tang, Q. X. Liu, Z. H. Tang, W. H. Li, X. B. Guo, and Y. C. Zhou, "Enhancement of Resistive Switching Performance in Hafnium Oxide (HfO2) Devices via Sol-Gel Method Stacking Tri-Layer HfO2/Al-ZnO/HfO2 Structures," (in English), Nanomaterials, Article vol. 13, no. 1, p. 12, Jan 2023.
    [25] S.-K. Lin, C.-H. Wu, T.-C. Chang, C.-H. Lien, C.-C. Yang, W.-C. Chen, C.-C. Lin, W.-C. Huang, Y.-F. Tan, and P.-Y. Wu, "Improving Performance by Inserting an Indium Oxide Layer as an Oxygen Ion Storage Layer in HfO₂-Based Resistive Random Access Memory," IEEE Transactions on Electron Devices, vol. 68, no. 3, pp. 1037-1040, 2021.
    [26] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, "Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications," Nanoscale research letters, vol. 15, pp. 1-26, 2020.
    [27] A. Prakash and H. Hwang, "Multilevel cell storage and resistance variability in resistive random access memory," Physical Sciences Reviews, vol. 1, no. 6, p. 20160010, 2016.
    [28] W. Ma, S. Lin, J. Luo, X. Zhang, Y. Wang, Z. Li, B. Wang, and Y. Zheng, "Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer," Applied Physics Letters, vol. 103, no. 26, p. 262903, 2013.
    [29] E. W. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," (in English), Electronics, Review vol. 4, no. 3, pp. 586-613, Sep 2015.
    [30] F. C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," (in English), Adv. Mater. Sci. Eng., Review vol. 2014, p. 18, 2014.
    [31] G. A. Gomez-Iriarte, A. Pentón-Madrigal, L. A. S. de Oliveira, and J. P. Sinnecker, "XPS Study in BiFeO3 Surface Modified by Argon Etching," Materials, vol. 15, no. 12, p. 4285, 2022.
    [32] C. Song, L.-j. Wang, S.-m. Sun, Y. Wu, L.-j. Xu, and L. Gan, "Preparation of visible-light photocatalysts of Bi2O3/Bi embedded in porous carbon from Bi-based metal organic frameworks for highly efficient Rhodamine B removal from water," New Carbon Materials, vol. 35, no. 5, pp. 609-618, 2020.
    [33] H. Deng, M. Zhang, T. Li, J. Wei, S. Chu, M. Du, and H. Yan, "Nonvolatile unipolar resistive switching behavior of amorphous BiFeO3 films," Journal of Alloys and Compounds, vol. 639, pp. 235-238, 2015.
    [34] J. Wang, L. Luo, C. Han, R. Yun, X. Tang, Y. Zhu, Z. Nie, W. Zhao, and Z. Feng, "The microstructure, electric, optical and photovoltaic properties of BiFeO3 thin films prepared by low temperature sol–gel method," Materials, vol. 12, no. 9, p. 1444, 2019.
    [35] F. Zeng, G. Fan, M. Hao, Y. Wang, Y. Wen, X. Chen, J. Zhang, and W. Lu, "Conductive property of BiFeO3–BaTiO3 ferroelectric ceramics with high Curie temperature," Journal of Alloys and Compounds, vol. 831, p. 154853, 2020.
    [36] C. Kumari, I. Varun, S. P. Tiwari, and A. Dixit, "Interfacial layer assisted, forming free, and reliable bipolar resistive switching in solution processed BiFeO3 thin films," AIP Advances, vol. 10, no. 2, p. 025110, 2020.
    [37] Z. Shen, C. Zhao, I. Z. Mitrovic, C. Zhao, Y. Liu, and L. Yang, "Resistive switching performance of memristor with solution-processed stacked MO/2D-materials switching layers," in 2021 International Conference on IC Design and Technology (ICICDT), 2021: IEEE, pp. 1-4.
    [38] A. Rivera‐Calzada, F. Gallego, Y. Kalcheim, P. Salev, J. del Valle, I. Tenreiro, C. León, J. Santamaría, and I. K. Schuller, "Switchable Optically Active Schottky Barrier in La0. 7Sr0. 3MnO3/BaTiO3/ITO Ferroelectric Tunnel Junction," Advanced Electronic Materials, vol. 7, no. 6, p. 2100069, 2021.
    [39] D. G. Popescu, M. A. Husanu, C. Chirila, L. Pintilie, and C. Teodorescu, "The interplay of work function and polarization state at the Schottky barriers height for Cu/BaTiO3 interface," Applied Surface Science, vol. 502, p. 144101, 2020.
    [40] Z. Sun, J. Wei, T. Yang, Y. Li, Z. Liu, G. Chen, T. Wang, H. Sun, and Z. Cheng, "Integrating Band Engineering and the Flexoelectric Effect Induced by a Composition Gradient for High Photocurrent Density in Bismuth Ferrite Films," ACS Applied Materials & Interfaces, vol. 13, no. 42, pp. 49850-49859, 2021.
    [41] M. G. Helander, M. Greiner, Z. Wang, W. M. Tang, and Z. Lu, "Work function of fluorine doped tin oxide," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, no. 1, p. 011019, 2011.
    [42] C.-C. Hsu, P.-X. Long, and Y.-S. Lin, "Enhancement of Resistive Switching Characteristics of Sol–Gel TiO x RRAM Using Ag Conductive Bridges," IEEE Transactions on Electron Devices, vol. 68, no. 1, pp. 95-102, 2020.
    [43] W. Zhang, J.-Z. Kong, Z.-Y. Cao, A.-D. Li, L.-G. Wang, L. Zhu, X. Li, Y.-Q. Cao, and D. Wu, "Bipolar resistive switching characteristics of HfO2/TiO2/HfO2 trilayer-structure RRAM devices on Pt and TiN-coated substrates fabricated by atomic layer deposition," Nanoscale research letters, vol. 12, no. 1, pp. 1-11, 2017.
    [44] J. Liu, H. Yang, Z. Ma, K. Chen, X. Zhang, X. Huang, and S. Oda, "Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure," Journal of Physics D: Applied Physics, vol. 51, no. 2, p. 025102, 2017.
    [45] C. Mahata and S. Kim, "Multi-level resistive switching in HfO 2/Al 2 O 3/HfO 2 based memristor on transparent ITO electrode," in 2020 International Conference on Electronics, Information, and Communication (ICEIC), 2020: IEEE, pp. 1-3.
    [46] A. Paul, S. Biswas, P. Das, H. Edwards, A. Dalal, S. Maji, V. Dhanak, A. Mondal, and R. Mahapatra, "Improved resistive switching characteristics of Ag/Al: HfO x/ITO/PET ReRAM for flexible electronics application," Semiconductor Science and Technology, vol. 36, no. 6, p. 065006, 2021.
    [47] R. W. Chuang, C.-C. Shih, and C.-L. Huang, "The enhanced electrode-dependent resistive random access memory based on BiFeO3," Applied Physics A, vol. 129, no. 5, p. 329, 2023.
    [48] C. F. Chang, J. Y. Chen, C. W. Huang, C. H. Chiu, T. Y. Lin, P. H. Yeh, and W. W. Wu, "Direct Observation of Dual‐Filament Switching Behaviors in Ta2O5‐Based Memristors," Small, vol. 13, no. 15, p. 1603116, 2017.
    [49] L.-G. Wang, X. Qian, Y.-Q. Cao, Z.-Y. Cao, G.-Y. Fang, A.-D. Li, and D. Wu, "Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications," Nanoscale research letters, vol. 10, no. 1, pp. 1-8, 2015.
    [50] C. Mahata, M. Kang, and S. Kim, "Multi-level analog resistive switching characteristics in tri-layer HfO2/Al2O3/HfO2 based memristor on ITO electrode," Nanomaterials, vol. 10, no. 10, p. 2069, 2020.
    [51] Y.-C. Chang, R.-Y. Xue, and Y.-H. Wang, "Multilayered barium titanate thin films by sol-gel method for nonvolatile memory application," IEEE Transactions on Electron Devices, vol. 61, no. 12, pp. 4090-4097, 2014.
    [52] R. Su, M. Cheng, A. Dong, Y. Zhao, W. Cheng, R. Yang, J. Yan, and X. Miao, "Interface barrier-induced conversion of resistive switching mechanism in Mn-doped BiFeO3 memristor," Applied Physics Letters, vol. 121, no. 20, p. 203503, 2022.
    [53] H. Li, S. Wu, P. Hu, D. Li, G. Wang, and S. Li, "Light and magnetic field double modulation on the resistive switching behavior in BaTiO3/FeMn/BaTiO3 trilayer films," Physics Letters A, vol. 381, no. 25-26, pp. 2127-2130, 2017.
    [54] Y. Sun, M. Tai, C. Song, Z. Wang, J. Yin, F. Li, H. Wu, F. Zeng, H. Lin, and F. Pan, "Competition between metallic and vacancy defect conductive filaments in a CH3NH3PbI3-based memory device," The Journal of Physical Chemistry C, vol. 122, no. 11, pp. 6431-6436, 2018.

    無法下載圖示 校內:2028-08-16公開
    校外:2028-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE