| 研究生: |
温賜安 Wen, Si-An |
|---|---|
| 論文名稱: |
檢測半導體奈米結構之非破壞性微波掃描探針顯微鏡技術的開發 Development of Non-Destructive Microwave SPM-Based Techniques for Semiconductor Nano-Structure Detection |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 埋層結構半導體 、微波振幅調製靜電力顯微鏡(AM-EFM) 、微波邊帶靜電力顯微鏡(Sideband-EFM) 、微波阻抗顯微鏡(MIM) 、有限元素分析法(Finite Element Method, FEM) |
| 外文關鍵詞: | Semiconductor Buried Dopants, Amplitude Modulated EFM, Sideband EFM, Microwave Impedance Microscopy (MIM), Finite Element Method (FEM) |
| 相關次數: | 點閱:240 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1]R. Fukuzawa et al., Quantitative capacitance measurements in frequency modulation electrostatic force microscopy, Jpn. J. Appl. Phys., 61, SL1005, (2022).
[2]Dohyeon Jeon, Yebin Kang, and Taekyeong Lim et al., Observing the Layer-Number-Dependent Local Dielectric Response of WSe2 by Electrostatic Force Microscopy, J. Phys. Chem. Lett., 11, (2020), p.6684~6690.
[3]L Lei et al., Local characterization of mobile charge carriers by two electrical AFM modes: multi-harmonic EFM versus sMIM, J. Phys. Commun., 2, 025013, (2020).
[4]金天慈, 陳宜君, 結合機器學習技術開發分析載子特性的多維半導體檢測技術, 成功大學, 物理所, (2023).
[5]Georg Gramse et al., Nanoscale imaging of mobile carriers and trapped charges in delta doped silicon p-n junctions, Nature Electronics, Vol 3, (2020), p.531~538.
[6]Donald A.Neamen, Semiconductor Physics and Devices (Basic Principle) Fourth Edition, McGraw-Hill Companies, New York, (2012), p.106~184, p.371~433.
[7]劉恩科、朱秉升、羅晉生, 半導體物理學, 新文京開發出版, (2006), p.309~356.
[8]Scanning Capacitance Microscopy (SCM) High Resolution and High Sensitivity Imaging of Charge Distribution, (2010).
[9]張茂楠、陳志遠、潘扶民, 掃描電容顯微鏡分析技術及其在矽晶圓表面分析與應用, 科儀新知, 第二十二卷第五期, (2001), p.67~75.
[10]F. P. Heiman, and G. Warfield et al., The Effects of Oxide Traps on the MOS Capacitance, IEEE Transactions on electron devices, (1965), p.167~178.
[11]Robert Stephenson, Anne Verhulst, and Peter De Wolf et al., Nonmonotonic behavior of the scanning capacitance microscope for large dynamic range samples, J. Vac. Sci. Technol. B 18(1), (2000), p.405~408.
[12]V. V. Zavyalov, J. S. McMurray, and C. C. Williams et al., Noise in scanning capacitance microscopy measurements, J. Vac. Sci. Technol. B 18(3), (2000), p.1125~1133.
[13]sMIM Measurement of Planar Doping Calibration Sample, (2018).
[14]Kurt A. Rubin, Yongliang Yang, and Oskar Amster et al., Electrical Atomic Force Microscopy for Nanoelectronics Chapter: Scanning Microwave Impedance Microscopy (sMIM) in Electronic and Quantum Materials, PrimeNano Inc, Sandia National Laboratories, (2018), p.1~40.
[15]O. Amster et al., Parctical quantitative scanning microwave impedance microscopy, Microelectronics Reliability 76-77, (2017), p.214~217.
[16]T. Schweinbock, and S. Hommel et al., Quantitative Scanning Microwave Microscopy: A calibration flow, Microelectronics Reliability 54, (2014), p.2070~2074.
[17]Enrico Brinciotti et al., Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy, Nanoscale, (2015).
[18]Enrico Brinciotti et al., Frequency Analysis of Dopant Profiling and Capacitance Spectroscopy Using Scanning Microwave Microscopy, IEEE Transactions on Nanotechnology, VOL. 16, NO. 1, (2017), p.75~82.
[19]S. Hommel et al., Determination of doping type by calibrated capacitance scanning microwave microscopy, Microelectronics Reliability 76-77, (2017), p.218~221.
[20]Scanning Microwave Impedance Microscopy (sMIM), (2021), https://www.bruker.com/en/products-and-solutions/microscopes/materials-afm/afm-modes/scanning-microwave-impedance-microscopy-smim.html
[21]黃壯群…等, 掃描微波阻抗顯微鏡:介電常數與電導率的奈米級成像, 科技新知, 209期, (2016), p.14~28.
[22]Mark E. Barber, Eric Yue Ma, and Zhi-Xun Shen et al., Microwave impedance microscopy and its application to quantum materials, (2021).
[23]C Gramse et al., Calibrated complex impedance and permittivity measurements with scanning microwave microscopy, Nanotechnology, 25, 145703, (2014).
[24]David M. Pozar, Microwave Engineering, John Wiley & Sons, Inc., United States of America, (2011), p.48~77, p.228~245.
[25]電磁學(二)_黃衍介_2.1~4.5, https://www.youtube.com/watch?v=xvEWRPW9PU4&list=PLI6pJZaOCtF3NiFngO8z36DQ79EFMFH-g
[26]黃彥霖, 朱英豪, 博士論文, 鐵酸鉍薄膜之鐵電工程 (Engineering the Ferroelectricity in BiFeO3 Thin Films), 交通大學, 材料工程暨科學系, (2017), p.51~61, p.107~111.
[27]Yen-Lin Huang et al., Unexpected Giant Microwave Conductivity in a Nominally Silent BiFeO3 Domain Wall, Adv. Matter. 32, 1905132, (2020).
[28]Yoshinori Tokura, and Naoya Kanazawa et al., Magnetic Skyrmion Materials, Chem. Rev., 121, (2021), p.2857~2897.
[29]K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Klaui et al., Perspective: Magnetic skyrmions-Overview of recent progress in an active research field, J. Appl. Phys., 124, 240901, (2018).
[30]Arianna Casiraghi et al., Individual skyrmion manipulation by local magnetic field gradients, Communications Physics, 2, 145, (2019).
[31]Wenjie Hu et al., Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing, Natures Communications, 14:2562, (2023).
[32]Weichao Yu, Micromagnetics Module User’s Guide (V 2.02), Fudan University, Shanghai China, Institute for Nanoelectronic devices and Quantum computing, (2022).
[33]Weiwei Wang, Matijan Beg, Bin Zhang, and Wolfgang Kuch et al., Driving magnetic skyrmions with microwave fields, Physical review B, 92, 020403(R), (2015).
[34]Martin Lonsky and Axel Hoffmann, Coupled skyrmion breathing modes in synthetic ferri- and antiferromagnets et al., Physics Review B, 102, 104403, (2020).
[35]曾賢德、果尚志, 奈米電性之掃描探針量測技術, 物理雙月刊, 廿五卷五期, (2003), p.632~648.
[36]林明彥、張嘉升、黎文龍, 原子力顯微鏡的原理(上)(下), 科技新知, 第二十七卷第二期, (2005), p.46~77.
[37]Kelvin Probe Force Microscopy Session 1 Amplitude Modulation, (2015), https://vimeo.com/137429761
[38]C Gramse et al., Theory of amplitude modulated electrostatic force microscopy for dielectric measurements in liquids at MHz frequencies, Nanotechnology 24, 415709, (2013).
[39]KPFM II Frequency Modulation, (2015), https://vimeo.com/137436396
[40]Sideband Kelvin Probe Force Microscopy for Advanced Materials Characterization, (2021), https://www.youtube.com/watch?v=8l0Xvy05eKE
[41]Riccardo Borgani et al., Intermodulation electrostatic force microscopy for imaging surface photo-voltage, Appl. Phys. Lett. 105, 143113, (2014).
[42]黃國維, 陳宜君, 基於頻帶激發與機器學習在掃描探針顯微技術上的開發, 成功大學, 物理所, (2020), p.17~20.
[43]翁詣昕, 陳宜君, 探測表面電位與磁性分布的變頻基礎掃描探針顯微鏡技術開發, 成功大學, 物理所, (2021), p.29~32.
[44]C B Casper et al., Electrostatic tip effects in scanning probe microscopy of nanostructures, Nanotechnology, 32, 195710, (2021).
[45]R.Fabregas et al., Three-dimensional modeling of electrical scanning probe microscopy problems. COMSOL Conference, Grenoble (2015).
[46]Comsol Multiphysics Global Website, Application Gallery(1)MOSCAP 1D: https://www.comsol.com/model/moscap-1d-47551(2)MOSCAP 1D Small Signal: https://www.comsol.com/model/moscap-1d-small-signal-53531(3)Interface Trapping Effects of a MOSCAP: https://www.comsol.com/model/interface-trapping-effects-of-a-moscap-67121(4)Computing Capacitance:https://www.comsol.com/model/computing-capacitance-12689(5)DC Characteristics of a MOS Transistor (MOSFET): https://www.comsol.com/model/dc-characteristics-of-a-mos-transistor-mosfet-14609(6)Small-Signal Analysis of a MOSFET: https://www.comsol.com/model/small-signal-analysis-of-a-mosfet-16381(7)Electrostatically Actuated Cantilever: https://www.comsol.com/model/electrostatically-actuated-cantilever-444
[47]Peter Reichel, Prof. Dr. Stefan Weber, Prof. Dr. Jure Demsar, Tip-sample capacitance in electrostatic force microscopy, Johannes Gutenberg-University Mainz, department of physics, mathematics and computer science, (2021).
[48]Mathematica入門, https://www.scribd.com/document/430460341/Mathematica%E8%AC%9B%E7%BE%A9-33-%E6%A0%BC%E5%BC%8F17-pdf
校內:2026-07-29公開