簡易檢索 / 詳目顯示

研究生: 温賜安
Wen, Si-An
論文名稱: 檢測半導體奈米結構之非破壞性微波掃描探針顯微鏡技術的開發
Development of Non-Destructive Microwave SPM-Based Techniques for Semiconductor Nano-Structure Detection
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 120
中文關鍵詞: 埋層結構半導體微波振幅調製靜電力顯微鏡(AM-EFM)微波邊帶靜電力顯微鏡(Sideband-EFM)微波阻抗顯微鏡(MIM)有限元素分析法(Finite Element Method, FEM)
外文關鍵詞: Semiconductor Buried Dopants, Amplitude Modulated EFM, Sideband EFM, Microwave Impedance Microscopy (MIM), Finite Element Method (FEM)
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract III 誌謝 XII 目錄 XIV 表目錄 XVI 圖目錄 XVI 第一章 緒論 1 第二章 文獻回顧 4 2.1 金屬氧化物半導體(MIS)結構的電容電壓曲線(C-V curve) 4 2.2 電容顯微鏡的校正分析簡介 9 2.3 微波工程阻抗匹配簡介 12 2.4 磁性材料與斯格明子(Skyrmion)簡介 17 第三章 實驗原理與方法 21 3.1 微波系統下的掃描式探針顯微鏡(SPM) 21 3.1.1 原子力顯微鏡(AFM) 21 3.1.2 微波振幅調製靜電力顯微鏡(AM-EFM) 25 3.1.3 微波邊帶靜電力顯微鏡(Sideband-EFM) 28 3.1.4 掃描電容顯微鏡(SCM) 32 3.1.5 磁力顯微鏡(MFM) 34 3.2 有限元素分析法(FEM)的電容模擬 37 3.3 考量探針效應(TIBB)的理論修正公式 39 第四章 結果與討論 42 4.1 微波Sideband-EFM與AM-EFM的電容定量分析 42 4.1.1 埋層結構半導體的EFM影像 42 4.1.2 數據的電容定量分析 46 4.1.3 理論公式擬合(Fitting)和模擬的電容摻雜濃度曲線(C-n curve) 48 4.1.4 載子濃度可辨別範圍與傳統掃描電容顯微鏡(SCM)的比較 51 4.2 有限元素分析法(FEM)探針效應(TIBB)下的電容影響因子 54 4.2.1 探針效應下的電子濃度圖 54 4.2.2 氧化層厚度、摻雜濃度和介面的影響因子 57 4.3 高頻微波在阻抗匹配(Stub Tuning)下的調控 65 4.3.1 雙株阻抗匹配(Double-Stub Tuning) 65 4.3.2 高頻微波輸入與判讀 66 4.3.3 埋層結構半導體的高頻微波EFM影像與特徵 71 4.3.4 雙層WSe2的高頻微波EFM影像與特徵 73 4.3.5 高頻微波下多層Pt/Co薄膜的磁力訊號與演化 76 4.4 微波阻抗顯微鏡(MIM)的開發 83 4.4.1 網路分析儀(VNA)結合原子力顯微鏡(AFM)與Labview雙向溝通 83 4.4.2 金(Au)電極的MIM影像與阻抗換算等效電容方式 88 4.4.3 埋層結構半導體的MIM影像與電容定量分析 90 第五章 結論 94 參考文獻 96

    [1]R. Fukuzawa et al., Quantitative capacitance measurements in frequency modulation electrostatic force microscopy, Jpn. J. Appl. Phys., 61, SL1005, (2022).
    [2]Dohyeon Jeon, Yebin Kang, and Taekyeong Lim et al., Observing the Layer-Number-Dependent Local Dielectric Response of WSe2 by Electrostatic Force Microscopy, J. Phys. Chem. Lett., 11, (2020), p.6684~6690.
    [3]L Lei et al., Local characterization of mobile charge carriers by two electrical AFM modes: multi-harmonic EFM versus sMIM, J. Phys. Commun., 2, 025013, (2020).
    [4]金天慈, 陳宜君, 結合機器學習技術開發分析載子特性的多維半導體檢測技術, 成功大學, 物理所, (2023).
    [5]Georg Gramse et al., Nanoscale imaging of mobile carriers and trapped charges in delta doped silicon p-n junctions, Nature Electronics, Vol 3, (2020), p.531~538.
    [6]Donald A.Neamen, Semiconductor Physics and Devices (Basic Principle) Fourth Edition, McGraw-Hill Companies, New York, (2012), p.106~184, p.371~433.
    [7]劉恩科、朱秉升、羅晉生, 半導體物理學, 新文京開發出版, (2006), p.309~356.
    [8]Scanning Capacitance Microscopy (SCM) High Resolution and High Sensitivity Imaging of Charge Distribution, (2010).
    [9]張茂楠、陳志遠、潘扶民, 掃描電容顯微鏡分析技術及其在矽晶圓表面分析與應用, 科儀新知, 第二十二卷第五期, (2001), p.67~75.
    [10]F. P. Heiman, and G. Warfield et al., The Effects of Oxide Traps on the MOS Capacitance, IEEE Transactions on electron devices, (1965), p.167~178.
    [11]Robert Stephenson, Anne Verhulst, and Peter De Wolf et al., Nonmonotonic behavior of the scanning capacitance microscope for large dynamic range samples, J. Vac. Sci. Technol. B 18(1), (2000), p.405~408.
    [12]V. V. Zavyalov, J. S. McMurray, and C. C. Williams et al., Noise in scanning capacitance microscopy measurements, J. Vac. Sci. Technol. B 18(3), (2000), p.1125~1133.
    [13]sMIM Measurement of Planar Doping Calibration Sample, (2018).
    [14]Kurt A. Rubin, Yongliang Yang, and Oskar Amster et al., Electrical Atomic Force Microscopy for Nanoelectronics Chapter: Scanning Microwave Impedance Microscopy (sMIM) in Electronic and Quantum Materials, PrimeNano Inc, Sandia National Laboratories, (2018), p.1~40.
    [15]O. Amster et al., Parctical quantitative scanning microwave impedance microscopy, Microelectronics Reliability 76-77, (2017), p.214~217.
    [16]T. Schweinbock, and S. Hommel et al., Quantitative Scanning Microwave Microscopy: A calibration flow, Microelectronics Reliability 54, (2014), p.2070~2074.
    [17]Enrico Brinciotti et al., Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy, Nanoscale, (2015).
    [18]Enrico Brinciotti et al., Frequency Analysis of Dopant Profiling and Capacitance Spectroscopy Using Scanning Microwave Microscopy, IEEE Transactions on Nanotechnology, VOL. 16, NO. 1, (2017), p.75~82.
    [19]S. Hommel et al., Determination of doping type by calibrated capacitance scanning microwave microscopy, Microelectronics Reliability 76-77, (2017), p.218~221.
    [20]Scanning Microwave Impedance Microscopy (sMIM), (2021), https://www.bruker.com/en/products-and-solutions/microscopes/materials-afm/afm-modes/scanning-microwave-impedance-microscopy-smim.html
    [21]黃壯群…等, 掃描微波阻抗顯微鏡:介電常數與電導率的奈米級成像, 科技新知, 209期, (2016), p.14~28.
    [22]Mark E. Barber, Eric Yue Ma, and Zhi-Xun Shen et al., Microwave impedance microscopy and its application to quantum materials, (2021).
    [23]C Gramse et al., Calibrated complex impedance and permittivity measurements with scanning microwave microscopy, Nanotechnology, 25, 145703, (2014).
    [24]David M. Pozar, Microwave Engineering, John Wiley & Sons, Inc., United States of America, (2011), p.48~77, p.228~245.
    [25]電磁學(二)_黃衍介_2.1~4.5, https://www.youtube.com/watch?v=xvEWRPW9PU4&list=PLI6pJZaOCtF3NiFngO8z36DQ79EFMFH-g
    [26]黃彥霖, 朱英豪, 博士論文, 鐵酸鉍薄膜之鐵電工程 (Engineering the Ferroelectricity in BiFeO3 Thin Films), 交通大學, 材料工程暨科學系, (2017), p.51~61, p.107~111.
    [27]Yen-Lin Huang et al., Unexpected Giant Microwave Conductivity in a Nominally Silent BiFeO3 Domain Wall, Adv. Matter. 32, 1905132, (2020).
    [28]Yoshinori Tokura, and Naoya Kanazawa et al., Magnetic Skyrmion Materials, Chem. Rev., 121, (2021), p.2857~2897.
    [29]K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Klaui et al., Perspective: Magnetic skyrmions-Overview of recent progress in an active research field, J. Appl. Phys., 124, 240901, (2018).
    [30]Arianna Casiraghi et al., Individual skyrmion manipulation by local magnetic field gradients, Communications Physics, 2, 145, (2019).
    [31]Wenjie Hu et al., Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing, Natures Communications, 14:2562, (2023).
    [32]Weichao Yu, Micromagnetics Module User’s Guide (V 2.02), Fudan University, Shanghai China, Institute for Nanoelectronic devices and Quantum computing, (2022).
    [33]Weiwei Wang, Matijan Beg, Bin Zhang, and Wolfgang Kuch et al., Driving magnetic skyrmions with microwave fields, Physical review B, 92, 020403(R), (2015).
    [34]Martin Lonsky and Axel Hoffmann, Coupled skyrmion breathing modes in synthetic ferri- and antiferromagnets et al., Physics Review B, 102, 104403, (2020).
    [35]曾賢德、果尚志, 奈米電性之掃描探針量測技術, 物理雙月刊, 廿五卷五期, (2003), p.632~648.
    [36]林明彥、張嘉升、黎文龍, 原子力顯微鏡的原理(上)(下), 科技新知, 第二十七卷第二期, (2005), p.46~77.
    [37]Kelvin Probe Force Microscopy Session 1 Amplitude Modulation, (2015), https://vimeo.com/137429761
    [38]C Gramse et al., Theory of amplitude modulated electrostatic force microscopy for dielectric measurements in liquids at MHz frequencies, Nanotechnology 24, 415709, (2013).
    [39]KPFM II Frequency Modulation, (2015), https://vimeo.com/137436396
    [40]Sideband Kelvin Probe Force Microscopy for Advanced Materials Characterization, (2021), https://www.youtube.com/watch?v=8l0Xvy05eKE
    [41]Riccardo Borgani et al., Intermodulation electrostatic force microscopy for imaging surface photo-voltage, Appl. Phys. Lett. 105, 143113, (2014).
    [42]黃國維, 陳宜君, 基於頻帶激發與機器學習在掃描探針顯微技術上的開發, 成功大學, 物理所, (2020), p.17~20.
    [43]翁詣昕, 陳宜君, 探測表面電位與磁性分布的變頻基礎掃描探針顯微鏡技術開發, 成功大學, 物理所, (2021), p.29~32.
    [44]C B Casper et al., Electrostatic tip effects in scanning probe microscopy of nanostructures, Nanotechnology, 32, 195710, (2021).
    [45]R.Fabregas et al., Three-dimensional modeling of electrical scanning probe microscopy problems. COMSOL Conference, Grenoble (2015).
    [46]Comsol Multiphysics Global Website, Application Gallery(1)MOSCAP 1D: https://www.comsol.com/model/moscap-1d-47551(2)MOSCAP 1D Small Signal: https://www.comsol.com/model/moscap-1d-small-signal-53531(3)Interface Trapping Effects of a MOSCAP: https://www.comsol.com/model/interface-trapping-effects-of-a-moscap-67121(4)Computing Capacitance:https://www.comsol.com/model/computing-capacitance-12689(5)DC Characteristics of a MOS Transistor (MOSFET): https://www.comsol.com/model/dc-characteristics-of-a-mos-transistor-mosfet-14609(6)Small-Signal Analysis of a MOSFET: https://www.comsol.com/model/small-signal-analysis-of-a-mosfet-16381(7)Electrostatically Actuated Cantilever: https://www.comsol.com/model/electrostatically-actuated-cantilever-444
    [47]Peter Reichel, Prof. Dr. Stefan Weber, Prof. Dr. Jure Demsar, Tip-sample capacitance in electrostatic force microscopy, Johannes Gutenberg-University Mainz, department of physics, mathematics and computer science, (2021).
    [48]Mathematica入門, https://www.scribd.com/document/430460341/Mathematica%E8%AC%9B%E7%BE%A9-33-%E6%A0%BC%E5%BC%8F17-pdf

    無法下載圖示 校內:2026-07-29公開
    校外:2026-07-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE