| 研究生: |
劉庭佑 Liu, Ting-Yiu |
|---|---|
| 論文名稱: |
二氧化碳添加至甲烷純氧燃燒之反應動力分析 A Kinetic Analysis of CO2 Addition in CH4/O2 Combustion |
| 指導教授: |
袁曉峰
Yuan, Hsiao-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 反應動力學 、純氧燃燒 、甲烷分解 、自由基 |
| 外文關鍵詞: | Kinetics, Pure oxygen combustion, Decomposition of methane, Radicals |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用CHEMKIN配合GRI-Mech 3.0模擬不同二氧化碳比例添加至甲烷純氧燃燒的反應動力變化,利用化學反應式的淨反應速率搭配物質濃度變化排列出化學反應路徑,從反應動力學的觀點分析甲烷在高溫時,添加CO2至系統,主燃料消耗受到抑制之情形。經分析發現,大量的CO2添加會使得系統中的H、O及OH的濃度不斷降低,進一步的觀察發現CO+OH↔H+CO2反應式會隨著CO2大量的增加至系統而開始消耗H並且生成大量的一氧化碳,此一情形將會使得接續的H2+OH↔H+H2O淨反應速率下降,分歧反應O2+H↔O+OH與H2+O↔H+OH也相同減速進而使H、O及OH的數量降低。為求更完整的分析二氧化碳添加對甲烷純氧燃燒的影響,本研究也模擬及分析不同溫度的反應動力變化,隨著系統溫度在1200K以下,添加二氧化碳對於系統反應動力的影響將會逐漸降低。針對貧油狀態下,二氧化碳添加至甲烷純氧燃燒的反應路徑分析,甲烷及氧化物的分解仍會隨著二氧化碳加而同樣受到抑制。
Detailed kinetic modeling of pure oxygen combustion of methane has been performed to investigate the chemical effects of CO2 addition. GRI 3.0 mechanism is adopted in this modeling. The results show that CO2 addition significantly drops H and O peak concentrations at high temperatures (>1200K). Further analyses shows the reaction CO+OH↔H+CO2 consumes H atom with large amount of CO2 addition. This results the increase of the net rate of the reaction H2+O↔H+OH and H2+OH↔H+H2O, and the decrease of the net rate of the major chain branching reaction O2+H↔O+OH to cause the observed suppressing phenomena of the combustion reactions. With adding CO2, decrease reaction temperature reduces its kinetic effect on combustion process. At temperatures below ~1200K, the prohibition effect of CO2 on combustion process becomes insignificant. The effects of fuel lean condition on the kinetic modeling are presented that the inhibitions of CH4 and O2 decomposition still exist in the reacting system.
[1] Westbrook, C. K., and Dryer, F. L., 1984, “Chemical Kinetic Modeling of Hydrocarbon Combustion,” Prog. Energy Combust. Sci., 10, pp. 1−57.
[2] Bowman, C. T., 1975, “Kinetics of Pollutant Formation and Destruction in Combustion,” Prog. Energy Combust. Sci., 1, pp. 33-45.
[3] Heywood, J. B., 1976, “Pollutant Formation and Control in Spark Ignition Engines,” Prog. Energy Combust. Sci., 1, pp. 135-164.
[4] Sarofim, A. F., and Flagan, R. C., 1976, “NOX Control for Stationary Combustion Sources,” Prog. Energy Combust. Sci., 2, pp. 1-25.
[5] Benson, S. W., 1981, “The Kinetics and Thermochemistry of Chemical Oxidation with Application to Combustion and Flames,” Prog. Energy Combust. Sci., 7, pp. 125-134.
[6] Dixon-Lewis, G., and Williams, D. J., 1977, “Comprehensive Chemical Kinetics (Bamford, C. H., and Tipper, C. F. H., Eds),” Elsevier, 17, PP. 1.
[7] McKay, G., 1977, “Gas-Phase Oxidations of Hydrocarbons,” Prog. Energy Combust. Sci., 3, pp. 105-126.
[8] Baldwin, R. R., Bennett, J. P., and Walker, R. W., 1977, “Rate Constants for Elementary Steps in Hydrocarbon Oxidation,” Symposium (International) on Combust., The Combustion Institute, 6, pp. 1041-1051.
[9] Wang, L., Haworth, D. C., Turns, S. R., and Modest, M. F., 2005, “Interactions among Soot, Thermal Radiation, and NOX Emissions in Oxygen-enriched Turbulent Nonpremixed Flames: A Computational Fluid Dynamics Modeling Study,” Combust. and Flame, 141, pp. 170−179.
[10] Payne, R., Chen, S. L., Wolsky, A. M., and Richter, W. F., 1989, “CO2 Recovery via Coal Combustion in Mixtures of Oxygen and Recycled Flue Gas,” Combust. Sci. Technol., 67, pp. 1−16.
[11] Ulizar, I., and Pilidis, P., 1997, “A Semiclosed-Cycle Gas Turbine With Carbon Dioxide-Argon as Working Fluid,” J. Eng. Gas Turbines Power, 119, p. 612-616.
[12] Singh, D., Croiset, E., Douglas, P. L., and Douglas, M. A., 2003, “Techno-Economic Study of CO2 Capture from an Existing Coal-Fired Power Plant: MEA Scrubbing vs. O2/CO2 Recycle Combustion,” Energy Conversion and Management, 44, pp. 3073−3091.
[13] Lazzara, C. P., Biordi, J. C., and Rapp, J. F., 1973, “Concentration Profiles for Radical Species in a Methane-Oxygen-Argon Flame,” Combust. and Flame, 21, pp. 371−382.
[14] Musick, M., Van Tiggelen, P. J., and Vandooren, J., 1996, “Experimental Study of the Structure of Several Fuel-Rich Premixed Flames of Methane, Oxygen, and Argon,” Proc. Combust. Inst., 105, pp. 433−450.
[15] Boni, A. A., and Penner, R. C., 1977, “Sensitivity analysis of a mechanism for methane oxidation kinetics,” Combust. Sci. Technol., 15, pp. 99−106.
[16] Dryer, F. L., Naegeli, D., and Glassman, I., 1971, “Temperature Dependence of the Reaction CO+OH=CO2+H,” Combust. Flame, 17, pp. 270-272.
[17] Smith, I. W. M., and Zellner, R., 1973, “Rate Measurements of Reactions of OH by Resonance Absorption. Part 2. – Reactions of OH with CO, C2H4 and C2H2,” J. Chem. Soc. Faraday II. Symp., 69, pp. 1617-1627.
[18] Biermann, H. W., Zetzsch, C., and Stuhl, F., 1978, “On the Pressure Dependence of the Reaction of OH with CO,” Ber. Bunsenges. phys. Chem., 82, pp. 633-639.
[19] Zhu, D. L., Egolfopoulos, F. N., and Law, C. K., 1988, “Experimental and Numerical Determination of Laminar Flame Speeds of Methane/(Ar, N2, CO2)-Air Mixtures as Function of Stoichiometry, Pressure, and Flame Temperature,” Proc. Combust. Inst., 22, pp. 1537−1545.
[20] Zhenjun, C., and Tong, Z., 2012, “Effects of CO2 Dilution on Methane Ignition in Moderate or Intense Low-Oxygen Dilution (MILD) Combustion: A Numerical Study,” Catalysis, Kinetics and Reaction Engineering, 20, pp. 701−709.
[21] Park, J., Hwang, D. J., Park, J. S., Keel, S. I., Cho, H. C., Noh, D. S., and Kim, T. K., 2007, “Hydrogen Utilization as a Fuel: Hydrogen-Blending Effects in Flame Structure and NO Emission Behavior of CH4/Air Flame,” Int. J. Energy Res., 31 (5), pp. 472-485.
[22] Liu, F., Guo, H., and Smallwood, G. J., 2003, “The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames,” Combust. Flame, 133 (4), pp. 495-497.
[23] Warnatz, J., Mass, U., and Dibble, R. W., 1999, “Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation,” 2nd ed., Springer-Verlag, Berlin Heidelberg, New York.
[24] Westbrook, C. K., and Dryer, F. L., 1984, “Chemical Kinetic and Modeling of Combustion Processes,” Symposium (International) on Combust., The Combustion Institute, 18, pp. 749.
[25] Kuo, K. K., 2005, “Principles of Combustion,” 2nd ed., Wiley-Interscience, Ch. 5.
[26] Kee, R. J., Rupley, F. M., Meeks, E., and Miller, J. A., 2000, Sandia National Laboratories Report, SAND96-8216.
[27] Reynolds, W. C., 1986, “The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN,” Department of Mechanical Engineering, Stanford University.
[28] Lutz, A. E., Kee, R. J. and Miller, J. A., 2000, Sandia National Laboratories Report, SAND87-8248.
[29] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W. Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S. Gardiner, W. C. Jr., Lissianski, V. V., and Qin, Z. Available from: <http://www.me.berkeley.edu/gri_mech/>.
[30] Rightley, M. L., and Williams, F. A., 1997, “Burning Velocities of CO Flames,” Combust. Sci. Technol., 125, pp. 125−181.
[31] Saxena, P. and Williams, 2006, “Testing a Small Detailed Chemical-Kinetic Mechanism for the Combustion of Hydrogen and Carbon Monoxide,” Combust. and Flame, In Press.
[32] Hewson, J. C., and Williams, F. A., 1999, “Rate-Ratio Asymptotic Analysis of Methane-Air Diffusion Flame Structure for Predicting Production of Oxides of Nitrogen,” Combust. and Flame, 117(3), pp. 441-476.
[33] Frenklach, M., Wang, H. and Rabinowitz, M., 1992, “Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method-Combustion of Methane,” Prog. in Energy and Combust. Sci., 18(1), pp. 47-73.
[34] Li, J., 2004, “Experimental and Numerical Studies of Ethanol Chemical Kinetics,” PhD thesis, Princeton University.
[35] Lindstedt, R. P. and Skevis, G., 1997, “Chemistry of Acetylene Flames,” Combust. Sci. and Technol., 125(1-6), pp. 73-137.