簡易檢索 / 詳目顯示

研究生: 廖廷豐
Liao, Ting-Feng
論文名稱: 質子傳遞奈米管道之微型燃料電池晶片研究
Experimental Study of Micro-Direct Methanol Fuel Cell Using Nanofludic-Based Proton Conductive Membranes
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 直接甲醇燃料電池奈米管道流率質子交換膜
外文關鍵詞: Direct methanol fuel cell, Nanochannel, Flow rate, Proton exchange membrane
相關次數: 點閱:143下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用微機電製程技術,製作出質子傳導奈米管道與燃料和氧化劑微米管道,再將晶片對位置入高溫爐完成熔融接合燃料電池微流體晶片,藉由奈米管道的電雙層重疊效應,使得帶有表面負電荷之奈米管道內部具有正(陽)離子選擇特性,以增益質子(氫離子)之電傳導率,取代以往的質子交換膜來進行質子傳遞的過程,本論文主要包含兩部分:(1)燃料和氧化劑流率影響功率密度分析、(2)奈米管道長度影響功率密度分析。
    第一部份,由於燃料甲醇和氧化劑過錳酸鉀的流率和電池的性能有密切關係,本研究使用三種流率。探討不同的流率在相同的奈米管道長度下的燃料電池性能,並繪製電流密度與電壓曲線圖,並得最大輸出功率密度值,結果顯示出當燃料甲醇和氧化劑過錳酸鉀流率越大,而輸出功率密度則隨之上升。
    第二部份,因為本文是利用奈米管道代替以往的質子交換膜進行質子傳導,所以本研究也改變奈米管道長短,探討電解質膜厚度(奈米管道)的影響,使用自行設計之三種奈米管道長度,結果顯示出奈米管道越短,電阻相對(歐姆阻抗)變小,電池功率密度越大。所以奈米管道在此種機制扮演著相當重要的角色。

    In this study, proton exchange nanochannels and fuel/oxidant microchannels were integrated to form micro-direct methanol fuel cells (μ-DMFCs) using microelectromechanical system (MEMS) technology. The μ-DMFCs chip were designed, fabricated and tested. Two issues were investigated on the fuel cells performance: (1) effect of anode cathode flow rate and (2) effect of nanochannel length.
    The flow rate of anode and cathode has importance effects on cell’s performances. We adopted three flow rates to investigate the fuel cell performance. The corresponding I–V performance curves are presented. The experimental results showed that better cell power density is obtained when the flow rate of anode and cathode increases.
    Since this study used nanochannel to substitute former proton exchange membrane to process proton transport, the nanochannel length is resemblance to membrane thickness. Therefore, we used three nanochannel lengths, and sketched the corresponding I-V performance curves with different kinds of flow rate. The results show that when the nanochannel is shorter, the fuel cell power density is larger. Consequently, the nanochannel plays a very important role in μ-DMFC chip design and operations.

    Abstract.................ii 誌 謝.....................iii 目 錄.....................iv 表目錄.....................vii 圖目錄.....................viii 第一章 緒論.................1 1-1前言....................1 1-2燃料電池種類.............4 1-2-1質子交換薄膜型燃料電池(PEMFC)[2,3]....7 1-2-2甲醇直接反應燃料電池(DMFC)[4-6].......8 1-3文獻回顧...............................8 1-4研究動機與目的.........................14 1-5本文架構...............................16 第二章 直接甲醇燃料電池基礎理論..............18 2-1直接甲醇燃料電池的基本原理...............18 2-2極化現象................................22 2-2-1活化過電位............................23 2-2-2濃度過電位............................24 2-2-3歐姆過電位............................25 2-3觸媒與多孔氣體擴散電極....................25 2-4雙極板..................................26 2-5膜電極組.................................27 2-6電雙層及重疊效應..........................27 2-7奈米管道代替質子交換膜(電解質隔膜)..........29 第三章 燃料電池晶片設計、製程與研究方法.........31 3-1燃料電池之設計與實驗方法....................31 3-2燃料電池晶片製作流程.......................34 3-2-1光罩繪製與製作...........................36 3-2-2基材(晶片)清洗...........................36 3-2-3光阻塗佈................................37 3-2-4對準與曝光..............................39 3-2-5顯影...................................40 3-2-6蒸鍍...................................41 3-2-7蝕刻....................................42 3-2-8光阻去除................................43 3-2-9玻璃晶片對位及熔接接合....................43 3-3實驗裝置..................................44 3-3-1直接甲醇燃料電池晶片(μ-DMFC chip).........45 3-3-2光學顯微鏡(Optical Microscope)...........45 3-3-3影像擷取單元(CCD)........................46 3-3-4注射式泵浦(Syringe Pump).................46 3-3-5樣品液(Sample)...........................47 3-3-6微電流量測平台............................47 第四章 實驗結果與討論...........................49 4-1改變燃料流率和氧化劑流率之功率密度分析.........49 4-2改變奈米管道長短之功率密度分析................54 第五章 結論與未來展望...........................60 5-1結論.......................................60 5-2未來展望...................................61 參考文獻......................................62 自述..........................................66

    1. Leo J. M. J. Blomen.; Michael N. Mugerwa., “Fuel Cell Systems”, Springer, ISBN 0-306-44158-6 (1993)

    2. Li, Q.F.; He, R.H.; Jensen, J.O.; Bjerrum, N.J., “Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 Degrees C”, Chemistry of Materials, 15, 4896-4915 (2003)

    3. Haile, S.M., “Fuel Cell Materials and Components”, Acata Materialia, 51, 5981-6000 (2003)

    4. Wasmus, S.; Kuver, A., “Methanol Oxidation and Direct Methanol Fuel Cells: A Selective Review”, Journal of Electroanalytical Chemistry, 461, 14-31 (1999)

    5. Heinzel, A.; Barragan, V.M., “A Review of The State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Cells”, Journal of Power Sources, 84, 70-74 (1999)

    6. Liu, H.S.; Song, C.J.; Zhang, L.; Zhang, J.J.; Wang H.J.; Wilkinson, D.P., “A Review of Anode Catalysis in the Direct Methanol Fuel Cell”, Journal of Power Sources, 155, 95-110 (2006)

    7. James, L., Andrew, D., Fuel Cell Systems Explained, John Wiley & Sons Inc., Hoboken, N.J., 2003.

    8. Dyer, C.K., “Fuel Cells for Portable Applications”, Journal of Power Sources, 106, 31-34 (2002)

    9. Kundu, A.; Jang, J.H.; Gil, J.H.; Jung, C.R.; Lee, H.R.; Kim, S.H.; Ku, B.; Oh, Y. S., “Micro-Fuel Cells-Current Development and Applications”, Journal of Power Sources, 170, 67-78 (2007)

    10. Morse, J.D., “Micro-Fuel Cell Power Sources”, International Journal of Energy Research, 31, 576-602 (2007)

    11. Nguyen, N.T.; Chan, S.H., “Micromachined Polymer Electrolyte Membrane and Direct Methanol Fuel Cells-A Review”, Journal of Micromechanics and Microengineering, 16, R1-R12 (2006)

    12. Bullen, R.A.; Arnot, T.C.; Lakeman, J.B.; Walsh, F.C., “Biofuel Cells and Their Development”, Biosensors & Bioelectronics, 21, 2015-2045 (2006)

    13. E. Katz, A.N. Shipway, I. Willner, Biochemical Fuel Cells, in: W. Vielstich, H.A.Gasteiger, A. Lamm (Eds.), Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 1, John Wiley & Sons, Ltd., New York, 2003.

    14. Logan, B.E.; Hamelers, B.; Rozendal, R.A.; Schrorder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K., “Microbial Fuel Cells: Methodology and Technology”, Environmental Science & Technology, 40, 5181-5192 (2006)

    15. Logan, B.E.; Regan, J.M., “Microbial Challenges and Applications”, Environmental Science & Technology, 40, 5172-5180 (2006)

    16. Jayashree, R.S.; Egas, D.; Spendelow, J.S.; Natarajan, D.; Markoski, L.J.; Kenis P.J.A., “Air-Breathing Laminar Flow-Based Direct Methanol Fuel Cell with Alkaline Electrolyte”, Electrochemical and Solid State Letters, 9, A252-A256 (2006)

    17. Jayashree, R.S.; Gancs, L.; Choban, E.R.; Primak, A.; Natarajan, D.; Markoski, L.J.; Kenis, P.J.A., “Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell”, Journal of the American Chemical Society, 127, 16758-16759 (2005)

    18. Kjeang, E.; Michel, R.; Harrington, D.A.; Sinton, D.; Djilali, N., “An Alkaline Microfluidic Fuel Cell Based on Formate and Hypochlorite Bleach”, Electrochimica Aata, 54, 698-705 (2008)

    19. Kjeang, E.; Proctor, B.T.; Brolo, A.G.; Harrington, D.A.; Djilali, N.; Sinton, D., “High-Performance Microfluidic Vanadium Redox Fuel Cell”, Electrochimica Aata, 52, 4942-4946 (2007)

    20. Salloum, K.S.; Hayes, J.R.; Friesen, C.A.; Posner, J.D., “Sequential Flow Membraneless Microfluidic Fuel Cell with Porous Electrodes”, Journal of Power Sources, 180, 243-252 (2008)

    21. Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A; Whitesides, G.M., “Rapid Prototyping of Microfluidic Systems in Poly(Dimethylsiloxane)”, Analytical Chemistry, 70, 4974-4984 (1998)

    22. de Leon, C.P.; Walsh, F.C.; Rose, A.; Lakeman, J.B.; Browning, D.J.; Reeve, R. W., “A Direct Borohydride-Acid Peroxide Fuel Cell”, Journal of Power Sources, 164, 441-448 (2007)

    23. Choudhury, N.A.; Raman, R.K.; Sampath, S.; Shukla, A.K., “An Alkaline Direct Borohydride Fuel Cell with Hydrogen Peroxide as Oxidant”, Journal of Power Sources, 143, 1-8 (2005)

    24. Ferrigno, R.; Stroock, A.D.; Clark, T.D.; Mayer, M.; Whitesides, G.M., “Membraneless Vanadium Redox Fuel Cell Using Laminar Flow”, Journal of the American Chemical Society, 124, 12930-12931 (2002)

    25. Sun, M.H.; Casquillas, G.V.; Guo, S.S.; Shi, J.; Ji, H.; Ouyang, Q.; Chen, Y., “Characterization of Microfluidic Fuel Cell Based on Multiple Laminar Flow”, Microelectronic Engineering, 84, 1182-1185 (2007)

    26. Dillon, R.; Srinivasan, S.; Arico, A.S.; Antonucci, V., “International Activities in DMFC R&D: Status of Technologies and Potential Applications”, Journal of Power Sources, 127, 112-116 (2004)

    27. Yang, H.; Zhao, T.S.; Ye, Q., “In Situ Visualization Study of CO2 Gas Bubble Behavior in DMFC Anode Flow Fields”, Journal of Power Sources, 139, 79-90 (2005)

    28. Yang, H.; Zhao, T.S.; Ye, Q., “Pressure Drop Behavior in the Anode Flow Field of Liquid Feed Direct Methanol Fuel Cells”, Journal of Power Sources, 142, 117-124 (2005)

    29. Liu, J.G.; Zhou, Z.H.; Zhao, X.X.; Sun, G.Q.; Yi, B.L., “Studies on Performance Degradation of a Direct Methanol Fuel Cell (DMFC) in Life Test”, Physical Chemistry Chemical Physics, 6, 134-137 (2004)

    30. Chang, H.; Kim, J.R.; Cho, J.H.; Kim, H.K.; Choi, K.H., “Materials and Processes for Small Fuel Cells”, Solid State Ionics, 148, 601-606 (2002)

    31. Blum, A.; Duvdevani, T.; Philosoph, M., Rudoy, N.; Peled, N., “Water-Neutral Micro Direct-Methanol Fuel Cell (DMFC) for Portable Applications”, Journal of Power Sources, 117, 22-25 (2003)

    32. Chen, C.Y.; Yang, P., “Performance of an Air-Breathing Direct Methanol Fuel Cell ”, Journal of Power Sources, 123, 37-42 (2003)

    33. Park, G.G.; Yang, T.H.; Yoon, Y.G.; Lee W.Y.; Kim, C.S., “Pore Size Effect of the DMFC Catalyst Supported on Porous Materials”, International Journal of Hydrogen Energy, 28, 645-650 (2003)

    34. Han, J.; Park, E.S., “Direct Methanol Fuel-Cell Combined with a Small back-up Battery ”, Journal of Power Sources, 112, 477-483 (2002)

    35. Liu, S.R.; Pu, Q.S.; Gao, L.; Korzeniewski, C.; Matzke, C., “From Nanochannel-Induced Proton Conduction Enhancement to a Nanochannel-Based Fuel Cell”, Nano Letters, 5, 1389-1393 (2005)

    36. Liu, J.G.; Zhao, T.S.; Liang, Z.X.; Chen, R., “Effect of Membrane Thickness on the Performance and Efficiency of Passive Direct Methanol Fuel Cells”, Journal of Power Sources, 153, 61-67 (2006)

    37. Tsampas, M.N.; Pikos, A.; Brosda, S.; Katsaounis, A.; Vayenas, C.G., “The Effect of Membrane Thickness on the Conductivity of Nafion”, Electrochimica Acta, 51, 2743–2755 (2006)

    38. Lu, Y.H.; Reddy R.G., “Performance of Micro-PEM fuel Cells with Different Flow Fields”, Journal of Power Sources, 195, 503–508 (2010)

    39. Ge, J.B.; Liu, H.T., “Experimental Studies of a Direct Methanol Fuel Cell”, Journal of Power Sources, 142, 56–69 (2005)

    40. Gurau, B.; Smotkin, E.S., “Methanol Crossover in Direct Methanol Fuel Cells: A Link between Power and Energy Density”, Journal of Power Sources, 112, 339–352 (2002)

    41. Jiang, Y.Q.; Wang, X.H.; Zhong, L.Y.; Liu, L.T., “Design, Fabrication and Testing of a Silicon-Based Air-Breathing Micro Direct Methanol Fuel Cell”, Journal of Micromechanics and Microengineering, 16, S233–S239 (2006)

    42. Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S., “Polymer Electrolyte Fuel Cell Model”, Journal of the Electrochemical Society, 138, 2334-2342 (1991)

    43. Dohle, H.; Divisek, J.; Jung, R., “Process Engineering of the Direct Methanol Fuel Cell”, Journal of Power Sources, 86, 469-477 (2000)

    44. Muller, J.T.; Urban, P.M.; Holderich, W.F., “Impedance Studies of Direct Methanol Fuel Cell Anodes”, Journal of Power Sources, 84, 157-160 (1999)

    45. Amphlett, J.C.; Peppley, B.A.; Halliop, E.; Sadiq, A., “The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell”, Journal of Power Sources, 96 204-213 (2001)

    下載圖示 校內:2013-07-26公開
    校外:2013-07-26公開
    QR CODE