| 研究生: |
潘士榮 Pan, Shih-Rong |
|---|---|
| 論文名稱: |
以有限元素法分析含次加勁材的加勁擋土牆在動態下行為之參數研究 Parametric study of GRS Walls with Secondary Reinforcement under Dynamic Conditions using FEM |
| 指導教授: |
洪瀞
Hung, Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 加勁擋土牆 、次加勁材 、有限元素法 、動態分析 |
| 外文關鍵詞: | geosynthetic-reinforced soil wall, secondary reinforcement, finite element analysis, dynamic analysis |
| 相關次數: | 點閱:142 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
加勁擋土結構中的加勁材常用設計垂直間距為0.6 m,而這樣相對較大的間距易導致加勁材與牆面連接力過大。因此,在工程設計上產生次加勁材的概念,意指在主級加勁材之間鋪設較短的加勁材,目的就是為了減緩主級加勁材的軸力,目前已被證明可有效提高地工合成材料加勁擋土牆 (Geosynthetic-Reinforced Soil Wall, GRSW) 在實際應力條件下的性能。然而,具有次加勁材的加勁擋土牆的抗震效果之相關研究仍舊不足。因此在本研究中,使用二維有限元素分析來研究帶有次加勁材的加勁擋土牆在地震運動下的反應。本研究的方法是參照過去文獻的有限元素建模程序,利用已驗證的方法建造加勁擋土牆模型,並分析有無次加勁材對於不同頂部載重 (0、8、16 kPa) 並在底部施加地震作用的反應,與有無次加勁材對於不同夯實度 (56%、90%) 回填土並在底部施加地震作用的反應,以及不同動態載重位置 (0.6、2、4.5、6.5、20 m) 對於加勁擋土牆的影響,討論牆面位移量、主級加勁材軸力、加速度放大效應與沉陷量的相關性。
根據本文的參數學習研究,可以得出以下結論:
(1) 在靜態與動態狀況下,次加勁材在工作應力條件下能夠降低主級加勁材的軸力、牆面位移與放大效應,提升加勁擋土牆整體的穩定性。
(2) 次加勁材在地震力作用和動態載重下能穩定牆體,尤其是在減緩主級加勁材軸力上,大部分的情況能減少14%以上的軸力量。但是對於加速度放大效應影響較小。
(3) 地震作用下,次加勁材對主加勁材軸力的減少效果在高夯實度的土壤較明顯。
(4) 作用力的位置越靠近牆面,次加勁材的效果會加強許多,能增加加勁擋土牆的穩定性。
Applications of geosynthetic reinforcements are commonly designed with a vertical spacing of 0.6 meters. This relatively large spacing may lead to a high reinforcement connection strength. To alleviate the primary reinforcement axial force, secondary reinforcements are set between primary reinforcement. Such design has been proved to show good performance under working stresses, however, the research on the seismic effect of the secondary reinforcement layer is still lacking. This study aims to investigate the effect of secondary reinforcement under dynamic conditions with two-dimension finite element method. Seismic behaviors of retaining wall with or without secondary reinforcement are evaluated and discussed. The method of this research uses the finite element modeling program of the past literature, use the validated method to build the GRS wall model, and analyze different top loads and apply earthquakes at the bottom, different compaction densities and apply earthquakes at the bottom, and the different dynamic load positions on top of the walls.
Under the static and dynamic condition, the results show that the secondary reinforcement layers can reduce both the maximum axial force of primary reinforcement and the wall displacement, and improve the overall stability of GRS structures. Under the seismic condition, the secondary reinforcement can effectively reduce the axial force of the primary reinforcement under higher compaction density. The closer the position of the force is near the wall, the effect of the secondary reinforcements will be much stronger, which can increase the stability of the GRS wall.
AASHTO. (2002). Standard specifications for highway bridges (Vol. 17). Washington, DC:American Association of State Highway and Transportation Officials: AASHTO.
Bathurst, R. & Hatami, K. (1998). Seismic response analysis of a geosynthetic-reinforced soil retaining wall. Geosynthetics International, 5(1-2), 127-166.
Bathurst, R., Hatami, K., Alfaro, M. (2002). Geosynthetics and TheirApplications, Geosynthetic-Reinforced Soil Walls and Slopes—Seismicaspects. In: Thomas Telford: London, UK.
Bathurst, R., Miyata, Y., Nernheim, A., Allen, A. (2008). Refinement of K-stiffness method for geosynthetic-reinforced soil walls. Geosynthetics International, 15(4), 269-295.
Bhattacharjee, A., Krishna, A. (2015). Strain behavior of backfill soil in rigid faced reinforced soil walls subjected to seismic excitation. International Journal of Geosynthetics and Ground Engineering, 1(2), 1-14.
Cai, Z. & Bathurst, R. J. (1995). Seismic response analysis of geosynthetic reinforced soil segmental retaining walls by finite element method. Computers and Geotechnics, 17(4), 523-546.
Chung, R. (1996). The January 17, 1995 Hyogoken-Nanbu (Kobe) earthquake: performance of structures, lifelines, and fire protection systems, US Department of Commerce, Technology Administration, National Institute of Standards and Technology.
Collin, J. (1996). Segmented Retaining Walls, National Concrete Masonry Association, Publication No. Retrieved from
El-Emam, M. M., Bathurst, R. J. (2007). Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls. Geotextiles and Geomembranes, 25(1), 33-49.
Fan, C., Liu, H., Cao, J., Ling, H. I. (2020). Responses of reinforced soil retaining walls subjected to horizontal and vertical seismic loadings. Soil Dynamics and Earthquake Engineering, 129, 105969.
FHWA. (2001). Mechanical Stabilized Earth Walls and Reinforced Soil Slopes Design & Construction Guideline. U.S. Department of Transportation, Washington, D.C.: National Highway Insitute, Federal highway administration.
Guler, E. & Selek, O. (2014). Reduced-scale shaking table tests on geosynthetic-reinforced soil walls with modular facing. Journal of Geotechnical and Geoenvironmental Engineering, 140(6), 04014015.
Hatami, K. & Bathurst, R. (2000). Effect of structural design on fundamental frequency of reinforced-soil retaining walls. Soil Dynamics and Earthquake Engineering, 19(3), 137-157.
Huang, C.-C., Horng, J.-C., Charng, J.-J. (2008). Seismic stability of reinforced slopes: effects of reinforcement properties and facing rigidity. Geosynthetics International, 15(2), 107-118.
Hung, W.-Y., Yang, K.-H., Nguyen, T. S., Pham, T.-N.-P. (2020). Performance of geosynthetic-reinforced soil walls at failure. Journal of GeoEngineering, 15(1), 13-29.
Jiang, Y., Han, J., Parsons, R. L., Cai, H. (2015a). Field monitoring of mechanically stabilized earth walls to investigate secondary reinforcement effects. Retrieved from
Jiang, Y., Han, J., Parsons, R. L., Brennan, J. J. (2016b). Field instrumentation and evaluation of modular-block MSE walls with secondary geogrid layers. Journal of Geotechnical and Geoenvironmental Engineering, 142(12), 05016002.
Jiang, Y., Han, J., Zornberg, J., Parsons, R., Leshchinsky, D., Tanyu, B. (2019c). Numerical analysis of field geosynthetic-reinforced retaining walls with secondary reinforcement. Géotechnique, 69(2), 122-132.
Jones, C. (2002). Guide to reinforced fill structure and slope design. Geoguide 6–Geotechnical Engineering Office. Civil Engineering Department. Hong Kong.
Kharchafi, M. & Dysli, M. (1994). Comportement des talus renforcés par géotextiles. Paper presented at the International conference on soil mechanics and foundation engineering.
Kramer, S. L. (1996). Geotechnical earthquake engineering: Pearson Education India.
Krishna, A. M. & Latha, G. M. (2012). Modeling the dynamic response of wrap-faced reinforced soil retaining walls. International Journal of Geomechanics, 12(4), 439-450.
Kuwano, J., Miyata, Y. & Koseki, J. (2014). Performance of reinforced soil walls during the 2011 Tohoku earthquake. Geosynthetics International, 21(3), 179-196.
Latha, G. M. & Krishna, A. M. (2008). Seismic response of reinforced soil retaining wall models: influence of backfill relative density. Geotextiles and Geomembranes, 26(4), 335-349.
Latha, G. M. & Santhanakumar, P. (2015). Seismic response of reduced-scale modular block and rigid faced reinforced walls through shaking table tests. Geotextiles and Geomembranes, 43(4), 307-316.
Lee, K., Chang, N., Ko, H. (2010). Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking. Geotextiles and Geomembranes, 28(4), 317-334.
Lelli, M., Laneri, R., Rimoldi, P. (2015). Innovative reinforced soil structures for high walls and slopes combining polymeric and metallic reinforcements. Procedia Engineering, 125, 397-405.
Leshchinsky, D. (2000). Alleviating connection load. Geotechnical Fabrics Report, 18(8).
Ling, H. I., Liu, H., Kaliakin, V. N., Leshchinsky, D. (2004). Analyzing dynamic behavior of geosynthetic-reinforced soil retaining walls. Journal of Engineering Mechanics, 130(8), 911-920.
Ling, H. I., Liu, H., Mohri, Y. (2005). Parametric studies on the behavior of reinforced soil retaining walls under earthquake loading. Journal of Engineering Mechanics, 131(10), 1056-1065.
Ling, H. I., Mohri, Y., Leshchinsky, D., Burke, C., Matsushima, K., Liu, H. (2005). Large-scale shaking table tests on modular-block reinforced soil retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 465-476.
Liu, C.-H. & Hung, C. (2020). Seismic Responses of GRS Walls with Secondary Reinforcements Subjected to Earthquake Loading. Applied Sciences, 10(20), 7084.
Liu, H., Hung, C., Cao, J. (2018). Relationship between Arias intensity and the responses of reinforced soil retaining walls subjected to near-field ground motions. Soil Dynamics and Earthquake Engineering, 111, 160-168.
Liu, H. & Ling, H. I. (2012). Seismic responses of reinforced soil retaining walls and the strain softening of backfill soils. International Journal of Geomechanics, 12(4), 351-356.
Liu, H., Wang, X., Song, E. (2011). Reinforcement load and deformation mode of geosynthetic-reinforced soil walls subject to seismic loading during service life. Geotextiles and Geomembranes, 29(1), 1-16.
Liu, H., Yang, G., Ling, H. I. (2014). Seismic response of multi-tiered reinforced soil retaining walls. Soil Dynamics and Earthquake Engineering, 61, 1-12.
Mirmoradi, S. H., & Ehrlich, M. (2015). Modeling of the compaction-induced stress on reinforced soil walls. Geotextiles and Geomembranes, 43(1), 82–88.
Panah, A. K., Yazdi, M., Ghalandarzadeh, A. (2015). Shaking table tests on soil retaining walls reinforced by polymeric strips. Geotextiles and Geomembranes, 43(2), 148-161.
PLAXIS. (2021). PLAXIS.
Ren, F., Zhang, F., Xu, C., Wang, G. (2016). Seismic evaluation of reinforced-soil segmental retaining walls. Geotextiles and Geomembranes, 44(4), 604-614.
Skinner, G. D. & Rowe, R. K. (2005). Design and behaviour of a geosynthetic reinforced retaining wall and bridge abutment on a yielding foundation. Geotextiles and Geomembranes, 23(3), 234-260.
Vidal, H. (1969). The Principle of Reinforced Earth. Highway Research Record 282, 1-16.
Wang, L.-y. & Iai, S. (2014). Numerical study on seismic performances of geogrid reinforced soil retaining walls in liquefiable backfill sand. Journal of Engineering Science and Technology Review, 7(1), 109-115.
Wu, J. T. (1994). Design and construction of low cost retaining walls: The next generation in technology: Colorado Transportation Institute.
Wu, S., Han, L., Cheng, Z., Zhang, X., Cheng, H. (2019). Study on the limit equilibrium slice method considering characteristics of inter-slice normal forces distribution: the improved Spencer method. Environmental Earth Sciences, 78(20).
Xiao, C., Han, J., Zhang, Z. (2016). Experimental study on performance of geosynthetic-reinforced soil model walls on rigid foundations subjected to static footing loading. Geotextiles and Geomembranes, 44(1), 81-94.
Yang, K.-H., Zornberg, J., Liu, C.-N., Lin, H.-D. (2012). Stress distribution and development within geosynthetic-reinforced soil slopes. Geosynthetics International, 19(1), 62-78.
Yazdandoust, M. (2017). Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test. Soil Dynamics and Earthquake Engineering, 97, 216-232.
Yoo, C. & Kim, S.-B. (2008). Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load: Full-scale load test and 3D finite element analysis. Geotextiles and Geomembranes, 26(6), 460-472.
Yu, H. S., Salgado, R., Sloan, S. W., Kim, J. M. (1998). Limit Analysis versus Limit Equilibrium for Slope Stability. Journal of Geotechnical and Geoenvironmental Engineering, 124(1), 1–11.
Zevgolis, I. E. (2018). A finite element investigation on displacements of reinforced soil walls under the effect of typical traffic loads. Transportation Infrastructure Geotechnology, 5(3), 231-249.
Zhou, X. P. & Cheng, H. (2013). Analysis of stability of three-dimensional slopes using the rigorous limit equilibrium method. Engineering Geology, 160, 21–33.
Zhu, D. Y., Lee, C. F., Jiang, H. D. (2003). Generalised framework of limit equilibrium methods for slope stability analysis. Géotechnique, 53(4), 377–395.
王雅微 (2009)。現地回填土壤加勁擋土牆的變形與安全係數之研究。國立臺灣科技大學營建工程系,台北市。
台北市土木技師公會 (2004)。結合生態與景觀之加勁擋土牆設計及規範。台北市。
交通部 (2008)。加勁擋土結構應用於交通土木工程規範草案之研究:交通部。
吳秉儒 (2019)。以有限元素法分析次級加勁擋土牆在靜態與動態下行為之研究。國立成功大學土木工程學系,台南市。
周南山 (1993)。地工合成物加勁牆分析設計之探討與評估。載於地工技術,第43期。頁 32-42。
周南山 (1998)。加勁擋土結構設計及施工手冊。台北市土木技師公會。
周南山 & 鄭恆志 (2015)。順天應人-綠色大地工程之發展。載於土木水利。第42冊,頁 66-78。
許德仲 (2019)。以有限元素法模擬震動特徵對加勁擋土牆動態行為之影響。國立成功大學土木工程學系,台南市。
莊志展 (2016)。優良材料之推廣與應用-以地工合成材為例。南投縣。水土保持局技研小組。
陳力維 (2006)。不同填築土料加勁擋土結構之行為與分析。國立宜蘭大學土木工程學系碩士班,宜蘭縣。
陳建吾 (2004)。加勁擋土牆動態行為之模擬。國立成功大學土木工程學系碩博士班,台南市。
楊錦裕 (2004)。現場足尺加勁擋土牆之變形與張力試驗研究。國立臺灣科技大學營建工程系,台北市。
廖瑞堂 (2013)。由台灣監測案例探討邊坡位移量之管理值。載於地工技術,第136期。頁 56-70。