簡易檢索 / 詳目顯示

研究生: 鄭翰哲
Cheng, Han-Che
論文名稱: 石墨烯作為銅導線介電阻障層漏電流與時依性介電崩潰之研究
The Study to Explore the Leakage Current and Time Dependent Dielectric Breakdown of Graphene as Dielectric Barriers of Copper Interconnects
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 140
中文關鍵詞: 石墨烯化學氣相沉積法電漿氟化介電阻障層漏電流時依性介電崩潰
外文關鍵詞: Graphene, Chemical Vapor Deposition, Plasma Fluorination, Dielectric Barrier
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當半導體製程不斷進步,尺寸逐漸縮小,在其中連結各個元件之銅導線也隨之縮小。過去作為阻擋銅擴散至介電層中之材料,因為電阻過大、厚度難以縮小而不敷使用。
    石墨烯有著卓越的電性與化學穩定性,並且單層石墨烯厚度僅有一個碳原子厚度。在本研究中我們將其包覆銅導線,作為銅導線之介電阻障層。我們利用化學氣相沉積法成長石墨烯於銅導線上,然而這與過去研究沉積石墨烯於銅箔或是銅薄膜不同。因為有機物會影響石墨烯生長,需要先藉由真空退火處理,去除製程銅導線所殘留之有機物。我們在真空度9×〖10〗^(-6)Torr,溫度為600ºC,能夠有效去除有機物殘留,成長出石墨烯於銅導線上。
    利用化學氣相沉積法沉積石墨烯於銅導線上,藉由改變氫氣流率,來改善石墨烯之品質。在氫氣流率為200 sccm時,使用拉曼光譜儀量測石墨烯的2D、G與D訊號,其中I2D/ IG為0.44,為多層石墨烯,ID/ IG為0.34。而從光學顯微鏡能夠觀察知道,在氫氣流率為200 sccm,石墨烯能夠完全包覆銅導線。
    研究發現在高溫成長石墨烯時,所產生之銅蒸氣,會催化甲烷裂解成非晶碳,沉積於銅導線之間,造成不相接之銅導線導通。所以我們利用電漿氟化處理,加裝濾片減弱電漿強度,將銅導線之間非晶碳氟化,使其不導電,並同時不完全氟化銅導線上石墨烯。
    在經過真空退火處理、化學氣相沉積石墨烯與電漿氟化處理所製造之石墨烯包覆銅導線,與僅經過真空退火處理之銅導線,在漏電流表現上有很大的不同。在線寬為5μm時之漏電流,沒有石墨烯是有石墨烯的2.18倍;在線寬為10μm時之漏電流,沒有石墨烯是有石墨烯的4.73倍;在線寬為20μm時之漏電流,沒有石墨烯是有石墨烯的1.43倍。
    石墨烯包覆銅導線也大大改善銅導線在時依性介電崩潰之結果。有石墨烯包覆在銅導線上,能夠承受更高的電壓,崩潰發生的時間也更長。由以上結果知道石墨烯能夠作為良好的銅導線介電阻障層。

    The copper interconnects are made by lift-off process using lithography and e-beam evaporation and the graphene was grown on the copper interconnects. The growth graphene step is divided into three parts, vacuum annealing, chemical vapor deposition and plasma fluorination. We used Raman spectroscopy and optical microscopy to find the optimal parameters of each steps.
    After the graphene-coated copper interconnects were successfully fabricated, we measured leakage current, time dependent dielectric breakdown and the resistance of the copper interconnects. The graphene-coated copper interconnects can effectively reduce leakage current at different line spaces (5, 10 and 20μm). In the time dependent dielectric breakdown results, the graphene is coated on the copper interconnects, which can withstand higher voltages and a longer time for breakdown. The copper interconnects were cut by FIB and the diffusion of the copper elements to the silicon dioxide was observed by EDS. Before breakdown, the average strength of the copper elements in the silicon dioxide above the graphene-coated copper interconnects is lower than that without the graphene-coated copper interconnects. From the above experimental results, we conclude that graphene can be good dielectric barriers of copper interconnects.

    摘要 I Extended Abstract III 致謝 IX 目錄 X 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 6 1.4 研究架構 6 第二章 基本理論 8 2.1 石墨烯簡介 8 2.1.1 電學性質 8 2.1.2 熱學性質 8 2.1.3 力學性質 9 2.2 石墨烯的製備方法 9 2.2.1 機械剝離法 9 2.2.2 氧化還原法 10 2.2.3 磊晶生長法 10 2.2.4 化學氣相沉積法 11 2.3 石墨烯之應用 12 2.3.1 電池 12 2.3.2 透明電極 13 2.3.3 場效電晶體 13 2.3.4 氣體與生物感測器 14 2.4 銅導線簡介 15 2.4.1 銅導線技術 15 2.4.2 電阻電容延遲 16 2.5 剝離法 17 2.6 漏電流機制 19 2.7 時間相依介電質崩潰 21 2.8 儀器理論 24 2.8.1 電子束蒸鍍原理 24 2.8.2 微影原理[53] 25 2.8.3 電漿輔助化學氣相沉積機原理 28 2.8.4 拉曼量測原理 28 2.8.5 掃描式電子顯微鏡原理 30 第三章 試件及實驗規劃 39 3.1 實驗目的 39 3.2 實驗步驟 40 3.2.1 微影製程 40 3.2.2 銅薄膜蒸鍍 42 3.2.3 剝離法 43 3.2.4 晶圓切割 44 3.2.5 真空退火 44 3.2.6 化學氣相沉積法 44 3.2.7 電漿氟化處理 47 3.3 實驗設備 48 3.3.1 化學濕式操作台(Chemical Wet Bench) 48 3.3.2 旋轉塗佈儀(Spin Coater) 48 3.3.3 雙面對準/UV光感奈米壓印機 49 3.3.4 電子槍蒸鍍機 51 3.3.5 晶圓切割機 52 3.3.6 高真空紅外線高溫快速退火系統 52 3.3.7 一和二吋化學氣相沉積石墨烯設備 53 3.3.8 光學顯微鏡 54 3.3.9 電漿輔助化學氣相沉積機 54 3.3.10 拉曼光譜儀 55 3.3.11 高解析熱場發射掃描式電子顯微鏡 56 3.3.12 雙束型聚焦離子束儀 57 3.3.13 探針台 57 第四章 結果與討論 78 4.1 銅導線製程結果 78 4.2 銅導線真空退火處理 79 4.3 氫氣流率對石墨烯品質影響 82 4.4 電漿氟化製程處理 85 4.5 漏電流量測結果 89 4.6 時依性介電崩潰結果 91 4.7 剖面觀察與成分分析 93 4.8 石墨烯包覆銅導線電阻值 99 第五章 結論與未來展望 132 5.1 結論 132 5.2 未來展望 134 參考文獻 135

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
    [2] P. Avouris, "Graphene: electronic and photonic properties and devices," Nano Lett, vol. 10, no. 11, pp. 4285-94, Nov 10 2010.
    [3] X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, "Graphene‐based materials: synthesis, characterization, properties, and applications," Small, vol. 7, no. 14, pp. 1876-1902, 2011.
    [4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, no. 1, pp. 109-162, 2009.
    [5] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, no. 7419, p. 192, 2012.
    [6] B.-S. Nguyen, J.-F. Lin, and D.-C. Perng, "1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier," Applied Physics Letters, vol. 104, no. 8, p. 082105, 2014.
    [7] A. C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, no. 18, p. 187401, 2006.
    [8] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of graphene growth on Ni and Cu by carbon isotope labeling," Nano letters, vol. 9, no. 12, pp. 4268-4272, 2009.
    [9] P. Avouris and C. Dimitrakopoulos, "Graphene: synthesis and applications," Materials Today, vol. 15, no. 3, pp. 86-97, 2012.
    [10] J. Kang, D. Shin, S. Bae, and B. H. Hong, "Graphene transfer: key for applications," Nanoscale, vol. 4, no. 18, pp. 5527-5537, 2012.
    [11] M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, "Transfer-free batch fabrication of single layer graphene transistors," Nano Letters, vol. 9, no. 12, pp. 4479-4483, 2009.
    [12] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, no. 5932, pp. 1312-1314, 2009.
    [13] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, "Growth of graphene from solid carbon sources," Nature, vol. 468, no. 7323, p. 549, 2010.
    [14] H. Ji, Y. Hao, Y. Ren, M. Charlton, W. H. Lee, Q. Wu, H. Li, Y. Zhu, Y. Wu, and R. Piner, "Graphene growth using a solid carbon feedstock and hydrogen," ACS Nano, vol. 5, no. 9, pp. 7656-7661, 2011.
    [15] B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K.-i. Ikeda, and S. Mizuno, "Epitaxial growth of large-area single-layer graphene over Cu (1 1 1)/sapphire by atmospheric pressure CVD," Carbon, vol. 50, no. 1, pp. 57-65, 2012.
    [16] L. Tao, J. Lee, H. Chou, M. Holt, R. S. Ruoff, and D. Akinwande, "Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films," Acs Nano, vol. 6, no. 3, pp. 2319-2325, 2012.
    [17] C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," Journal of Materials Chemistry, vol. 21, no. 10, pp. 3324-3334, 2011.
    [18] K. Chavez and D. Hess, "A novel method of etching copper oxide using acetic acid," Journal of The Electrochemical Society, vol. 148, no. 11, pp. G640-G643, 2001.
    [19] S. Poulston, P. Parlett, P. Stone, and M. Bowker, "Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES," Surface and Interface Analysis, vol. 24, no. 12, pp. 811-820, 1996.
    [20] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, "Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene," ACS Nano, vol. 5, no. 7, pp. 6069-6076, 2011.
    [21] G. H. Han, F. Gunes, J. J. Bae, E. S. Kim, S. J. Chae, H.-J. Shin, J.-Y. Choi, D. Pribat, and Y. H. Lee, "Influence of copper morphology in forming nucleation seeds for graphene growth," Nano Letters, vol. 11, no. 10, pp. 4144-4148, 2011.
    [22] L. Gao, W. Ren, J. Zhao, L.-P. Ma, Z. Chen, and H.-M. Cheng, "Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition," Applied Physics Letters, vol. 97, no. 18, p. 183109, 2010.
    [23] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, and D. Wei, "Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition," Nature Materials, vol. 10, no. 6, p. 443, 2011.
    [24] C. M. Orofeo, H. Hibino, K. Kawahara, Y. Ogawa, M. Tsuji, K.-i. Ikeda, S. Mizuno, and H. Ago, "Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene," Carbon, vol. 50, no. 6, pp. 2189-2196, 2012.
    [25] Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, "Toward the synthesis of wafer-scale single-crystal graphene on copper foils," ACS Nano, vol. 6, no. 10, pp. 9110-9117, 2012.
    [26] D. L. Miller, M. W. Keller, J. M. Shaw, A. N. Chiaramonti, and R. R. Keller, "Epitaxial (111) films of Cu, Ni, and CuxNiy on α− Al2O3 (0001) for graphene growth by chemical vapor deposition," Journal of Applied Physics, vol. 112, no. 6, p. 064317, 2012.
    [27] S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, "Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst," Nano Letters, vol. 10, no. 10, pp. 4128-4133, 2010.
    [28] L. Gao, J. R. Guest, and N. P. Guisinger, "Epitaxial graphene on Cu (111)," Nano Letters, vol. 10, no. 9, pp. 3512-3516, 2010.
    [29] I. Vlassiouk, S. Smirnov, M. Regmi, S. P. Surwade, N. Srivastava, R. Feenstra, G. Eres, C. Parish, N. Lavrik, and P. Datskos, "Graphene nucleation density on copper: fundamental role of background pressure," The Journal of Physical Chemistry C, vol. 117, no. 37, pp. 18919-18926, 2013.
    [30] C. A. Howsare, X. Weng, V. Bojan, D. Snyder, and J. A. Robinson, "Substrate considerations for graphene synthesis on thin copper films," Nanotechnology, vol. 23, no. 13, p. 135601, 2012.
    [31] H. Y. Nan, Z. H. Ni, J. Wang, Z. Zafar, Z. X. Shi, and Y. Y. Wang, "The thermal stability of graphene in air investigated by Raman spectroscopy," Journal of Raman Spectroscopy, vol. 44, no. 7, pp. 1018-1021, 2013.
    [32] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, and AA, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, no. 7065, p. 197, 2005.
    [33] J.-H. Chen, C. Jang, S. Adam, M. Fuhrer, E. Williams, and M. Ishigami, "Charged-impurity scattering in graphene," Nature Physics, vol. 4, no. 5, p. 377, 2008.
    [34] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, no. 3, pp. 902-907, 2008.
    [35] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, no. 5887, pp. 385-388, 2008.
    [36] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, "Preparation and characterization of graphene oxide paper," Nature, vol. 448, no. 7152, p. 457, 2007.
    [37] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, and P. N. First, "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," The Journal of Physical Chemistry B, vol. 108, no. 52, pp. 19912-19916, 2004.
    [38] Y. Zhang, L. Zhang, and C. Zhou, "Review of chemical vapor deposition of graphene and related applications," Accounts of chemical research, vol. 46, no. 10, pp. 2329-2339, 2013.
    [39] Y.-H. Lee and J.-H. Lee, "Scalable growth of free-standing graphene wafers with copper (Cu) catalyst on SiO2/Si substrate: thermal conductivity of the wafers," Applied Physics Letters, vol. 96, no. 8, p. 083101, 2010.
    [40] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. Zhang, "Direct chemical vapor deposition of graphene on dielectric surfaces," Nano Letters, vol. 10, no. 5, pp. 1542-1548, 2010.
    [41] Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, "Wafer-scale synthesis and transfer of graphene films," Nano Letters, vol. 10, no. 2, pp. 490-493, 2010.
    [42] Y. Obeng, S. De Gendt, P. SRinivasan, D. Misra, H. Iwai, Z. Karim, D. Hess, and H. Grebel, "Graphene and emerging materials for post-CMOS applications," Electrochemical Society: Pennington, NJ, USA, 2009.
    [43] W. Cai, Y. Zhu, X. Li, R. D. Piner, and R. S. Ruoff, "Large area few-layer graphene/graphite films as transparent thin conducting electrodes," Applied Physics Letters, vol. 95, no. 12, p. 123115, 2009.
    [44] W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, "Synthesis of graphene and its applications: a review," Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 1, pp. 52-71, 2010.
    [45] Y.-W. Son, M. L. Cohen, and S. G. Louie, "Energy gaps in graphene nanoribbons," Physical review letters, vol. 97, no. 21, p. 216803, 2006.
    [46] MicroChemicals. (2013, 7 Nov). Lift-off Processes with Photoresists. Available: https://www.microchemicals.com/technical_information/lift_off_photoresist.pdf
    [47] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John Wiley & Sons, 2006.
    [48] M. He and T.-M. Lu, Metal-dielectric interfaces in gigascale electronics: thermal and electrical stability. Springer Science & Business Media, 2012.
    [49] C. Crowell, "The Richardson constant for thermionic emission in Schottky barrier diodes," Solid-State Electronics, vol. 8, no. 4, pp. 395-399, 1965.
    [50] W. Wu, X. Duan, and J. S. Yuan, "Modeling of time-dependent dielectric breakdown in copper metallization," IEEE transactions on device and materials reliability, vol. 3, no. 2, pp. 26-30, 2003.
    [51] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2006.
    [52] D. L. Smith, Thin-film deposition: principles and practice. McGraw Hill Professional, 1995.
    [53] 蕭宏, 半導體製程技術導論. 台灣培生教育, 2007.
    [54] J. Hodkiewicz, "Characterizing graphene with Raman spectroscopy," Thermo Fisher Scientific, p. 51946, 2010.
    [55] A. E. F. Oliveira, G. B. Braga, C. R. T. Tarley, and A. C. Pereira, "Thermally reduced graphene oxide: synthesis, studies and characterization," Journal of Materials Science, vol. 53, no. 17, pp. 12005-12015, 2018.
    [56] Wikipedia contributors. (12 May 2018 12:38 UTC). Photoresist. Available: https://en.wikipedia.org/w/index.php?title=Photoresist&oldid=835258904
    [57] Thermal evaporation in vacuum. Available: http://www.icmm.csic.es/fis/english/evaporacion_resistencia.html
    [58] Electron Beam Heating Evaporation. Available: http://www.icmm.csic.es/fis/english/evaporacion_electrones.html
    [59] P. J. McNally, "Raman Spectroscopy Basics," Princeton Instruments, 2012.
    [60] W. Tipping, M. Lee, A. Serrels, V. Brunton, and A. Hulme, "Stimulated Raman scattering microscopy: an emerging tool for drug discovery," Chemical Society Reviews, vol. 45, no. 8, pp. 2075-2089, 2016.
    [61] MicroChemicals. (February 2011). Microposit s1800 series photoresist. Available: http://www.nanophys.kth.se/nanophys/facilities/nfl/resists/S1813/s1800seriesDataSheet.pdf
    [62] MicroChemicals. (2009). MICROPOSIT(TM) 351 Developer. Available: http://cmnst.ncku.edu.tw/ezfiles/23/1023/img/127/351Developerb.pdf
    [63] T. K. Wong, "Time dependent dielectric breakdown in copper low-k interconnects: Mechanisms and reliability models," Materials, vol. 5, no. 9, pp. 1602-1625, 2012.
    [64] H. Kim, I. Song, C. Park, M. Son, M. Hong, Y. Kim, J. S. Kim, H.-J. Shin, J. Baik, and H. C. Choi, "Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate," ACS nano, vol. 7, no. 8, pp. 6575-6582, 2013.
    [65] K.-I. Ho, C.-H. Huang, J.-H. Liao, W. Zhang, L.-J. Li, C.-S. Lai, and C.-Y. Su, "Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics," Scientific Reports, vol. 4, p. 5893, 2014.

    下載圖示 校內:2024-01-25公開
    校外:2024-01-25公開
    QR CODE