| 研究生: |
莊志遠 Zhuang, Zhi-Yuan |
|---|---|
| 論文名稱: |
氧化鈷奈米結構之製備與其退火行為 Characterization and Post-annealing of Cobalt Oxides Nanostructures by Thermal Chemical Vapor Deposition |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 氧化鈷 、化學氣相沉積 |
| 外文關鍵詞: | chemical vapor deposition, cobalt oxides |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於製作氧化鈷奈米結構,並分析製備出的奈米結構其結構及成份變化。實驗中,主要使用熱反應式化學氣相沉積製程,以醋酸鈷為先驅物,利用掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察試片的形貌,利用TEM及傅立葉轉換紅外光譜儀(FTIR)分析其結構及成份,並使用超導量子干涉磁量儀(SQUID)觀察試片在低溫下的磁性表現。
經由控制製程溫度及時間,本實驗成功的製作出CoO相奈米線以及Co3O4相的奈米顆粒。另外,本研究將會對CoO相奈米線作退火實驗,觀察其形貌、結構及成份的變化,發現在退火過後,奈米線在形貌上並沒有太大的變化,而結構上則會由CoO相變化為Co3O4相,故可得到Co3O4相的奈米線。而在SQUID磁性量測中,可以觀察到原本為反鐵磁性的Co3O4相,在低溫下會有鐵磁性性質。
In this study, various nanostructures of cobalt oxides are synthesized. Thermal chemical vapor deposition is used in the process and cobalt acetate is used as precursor. Morphology of the grown sample is observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Structures and compositions are characterized by fourier transform infrared spectrometry (FTIR) and TEM. Hysteresis curve is measured by superconducting quantum interference device (SQUID) at low temperature.
CoO nanowires and Co3O4 nanoparticles are successfully synthesized through controlling the growth temperature and ambience. Otherwise, post-annealing heat treatment of CoO nanowires is studied. After annealing, the changes of morphology, structure and composition are analyzed. It was found that the morphology has no change obviously, but the phase was transformed from CoO to Co3O4. In the SQUID measurement, the result reveals that the Co3O4 nanocrystal would exhibit ferromagnetic property at low temperature, compared to antiferromagnetic in bulk.
1. R. C. Wang, C. P. Liu, J. L. Huang, S.-J. Chen, Y.-K. Tseng, and S.-C. Kung, Appl. Phys. Lett. 87, 013110 (2005)
2. Sasaki S, Kang S, Kitagawa K, Yamaguchi M, Miyashita S, Maruyama T, Tamura H, Akazaki T, Hirayama Y, Takayanagi H, Phys. Rev. B 73, 161303(R), 2006
3. Chang CY, Tsao FC, Pan CJ, Chi GC, Wang HT, Chen JJ, Ren F, Norton DP, Pearton SJ, Chen KH, Chen LC, Appl. Phys. Lett. 88 173503 (2006)
4. Itoh T, Shimabukuro S, Kawamura S, Nonomura S, Thin Solid Films 501 (1-2), 314-317 (2006)
5. Ghosh M, Sampathkumaran EV, Rao CNR, Chem. Mater., 17, 2348-2352 (2005)
6. McNally EA, Zhitomirsky I, Wilkinson DS,Mater. Chem. Phys 91 391–398 (2005)
7. Do JS, Weng CH, Journal of Power Sources 146, 482–486 (2005)
8. Yang HM, Hu YH, Zhang XC, et al., Materials Letters 58, 387– 389 (2004)
9. Li QW, Luo GA, Shu YQ, Analytica Chimica Acta 409, 137–142 (2000)
10. Kadam LD, Patil PS, Solar Energy Materials & Solar Cells 70, 1523 (2001)
11. Avila AG, Barrera EC, Huerta LA, et al., Solar Energy Materials & Solar Cells 82, 269–278 (2004)
12. Zhou GL, Jiang Y, Xie HM, et al., Chemical Engineering Journal 109, 141–145 (2005)
13. Yu T, Zhu YW, Xu XJ, et al., Advanced Materials 17, 1595-1599 (2005)
14. Yamamoto H, Tanaka S, Hirao K, Glass Science and Technology 75, 319-327 (2002)
15. Hai-Tao Zhang and Xian-Hui Chen., Nanotechnology 16, 2288–2294 (2005)
16. Wang YQ, Yang CM, Schmidt W, et al., Advanced Materials 17 (1), 53 (2005)
17. Tao Li, Shaoguang Yang, Lisheng Huang, Benxi Gu and Youwei Du., Nanotechnology 15, 1479–1482 (2004)
18. Shengyong Xu, Mingliang Tian, Jinguo Wang, Jian Xu, Joan M. Redwing, and Moses H. W. Chan, Small 1, No. 12, 1221– 1229 (2005)
19. R. S.Wanger and E.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
20. T.J. Trentler, K. M. Hickman, S. C. Goel, A.M. Viano, P. C. Gibbons and W. E. Buhro, Science 270, 1791 (1995)
21. T. J. Trentler, S. C. Goel, K. M. Hicman, A.M. Viano, M. Y. Chiang, A. M. Beatty, P.C. bibbons and W. E. Buhro, J. Am. Chem. Soc. 119, 2172 (1997).
22. P. Yang and C.M. Lieber, Science 273, 1836 (1996)
23. P. Yang and C.M. Lieber, J. Mater. Res. 12, 2981 (1997)
24. A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
25. W. G. Moffatt, The Handbook of Binary Phase Diagrams (Genium, Schenectady, NY, 1976).
26. Younan Xia,Peidong Yang ,Adv.Mater.,(15), 353 (2003)
27. H. Yu, W.E. Buhro, Advanced Materials 15 (5), 416 (2003)
28.L.X.Zhao,G..W.Meng,X.S.Peng,X.Y.Zhang,L.D.Zhang ,Appl.Phys.A,(74), 587 (2002)
29. Yu et al. Solid State Communication 109, 677-682 (1999)
30. J. Liang, S.-K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, Appl. Phys. Lett., 83, 1752 (2003)
31. Kim K, Kim M, Cho SM Materials Chemistry and Physics 96, 278–282 (2006)
32. Zheng Miao, Dongsheng Xu,* Jianhua Ouyang, Guolin Guo,* Xinsheng Zhao, and Youqi Tang, Nano Lett., 2, 717 (2002)
33. Davide Barreca and Cristian Massignan Sergio Daolio and Monica Fabrizio Clara, Piccirillo, Chem. Mater., 13, 588-593 (2001)
34. Tao He, Dairong Chen, and Xiuling Jiao, Chem. Mater., 16, 737-743 (2004)
35. T. Yu, Y. W. Zhu, X. J. Xu, Z. X. Shen, P. Chen, C.-T. Lim, J. T.-L. Thong, C.-H. Sow, Adv. Mater., 17, 1595 (2005)
36. Eiji Hosono, Shinobu Fujihara, Itaru Honm and Haoshen Zhou, J. Mater. Chem., 15, 1938–1945 (2005)
37. Tao Li, Shaoguang Yang, Lisheng Huang, Benxi Gu and Youwei Du, Nanotechnology 15, 1479–1482 (2004)
38. Hai-Tao Zhang and Xian-Hui Chen, Nanotehnology 16, 2288-2294 (2005)
39. Moumita Ghosh, E. V. Sampathkumaran and C. N. R. Rao, Chem. Mater. 17, 2348-2352 (2005)
40. Salah A. Makhlouf, Journal of Magnetism and Magnetic Materials 246, 184-190 (2002)
41 Y. J. Tang. David J. Smith, B. L. Zink, F. Hellman and A. E. Berkowitz, Phys. Rev. B 67, 054408 (2003)
42. Hongyu Guan, Changlu Shao, Shangbin Wen, Bin Chen, Jian Gong, Xinghua Yang, Mater. Chem. Phys. 82, 1002-1006 (2003)
43. Yun Liu, Wei Ren, Liangyin Zhang, Xi Yao, Thin Solid Films 353, 124-128 (1999)
44. E. Ingier-Stocka and A. Grabowska, Journal of thermal Analysis and Calorimetry 54, 115-123 (1998)