| 研究生: |
郭芷歆 Kuo, Jr-Shin |
|---|---|
| 論文名稱: |
探討ARGDMX motif在Rhodostomin中對於辨識整合蛋白αvβ3、αIIbβ3和α5β1所扮演的角色 The Role of the ARGDMX Motif of Rhodostomin in Recognition of Integrins αvβ3, αIIbβ3 and α5β1 |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 整合蛋白 、去整合蛋白 、RGD motif |
| 外文關鍵詞: | integrin, disintegrin, RGD motif |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
整合蛋白是異質雙體的細胞表面黏著受器的一員,媒介許多由「內至外」和「外至內」的訊息傳遞,並且參與許多細胞繁殖、細胞黏著、分離、移動和細胞凋亡現象。在24種整合蛋白裡,有8種整合蛋白是可以有效地辨識蛋白質中的RGD motif作為受質。Rhodostomin (Rho)是由蛇毒純化而來的整合蛋白抑制劑,擁有一個PRGDMP序列,分子由68個胺基酸組成。近年來有許多研究顯示含有RGD序列的蛋白中,改變RGD本身或周圍序列會影響和整合蛋白結合的專一性和親和力。舉例來說,去整合蛋白擁有一個RGDW motif對整合蛋白αIIbβ3有高度抑制能力;去整合蛋白有RGDN motif則選擇性地和整合蛋白αvβ3和α5β1結合。因此,本實驗中利用Rho當作蛋白質鷹架研究在去整合蛋白有個ARGDMX motif在辨識整合蛋白上扮演一個怎樣的角色。首先,先成功地利用P. pastoris表現系統表現以及純化18株Rho ARGDMX突變株。抑制血小板凝集實驗中,Rho突變株以及Rho對血小板的抑制能力並沒有明顯的差別。在細胞黏著的實驗中,Rho的ARGDMX突變株與Rho相較之下抑制整合蛋白αvβ3、αIIbβ3和α5β1的結合能力分別下降了0.8-30.7、2.9-150.2和0.2-65.4倍。有趣的是比較Rho的ARGDMX突變株對Rho的ARGDMP突變株發現針對不同的整合蛋白αvβ3、αIIbβ3和α5β1分別造成40、52和285倍抑制能力下降,這表示X位置的胺基酸改變對於整合蛋白α5β1有顯著的影響而非整合蛋白αvβ3和αIIbβ3。當X位置為疏水性胺基酸如W、F、Y、I、V和A時,突變蛋白對整合蛋白αvβ3有高度親和力;當X位置為P、V和T時則對整合蛋白α5β1有較高的親和力。相反地,帶電荷的胺基酸D、E、K、R和H取代X時,降低了對整合蛋白α5β1的辨識能力。本研究中同時也找到了三種可以選擇性地抑制整合蛋白αvβ3的Rho突變蛋白,分別是ARGDMA、ARGDMI和ARGDMW。而這些研究的結果可作為未來設計對整合蛋白αvβ3或α5β1有專一性的去整合蛋白的基礎。
Integrins are a family of heterodimeric cell-surface adhesion receptors, which mediate the outside-in and inside-out signaling and are involved in cell proliferation, adhesion, detachment, migration, and apoptosis. Eight out of twenty-four integrins recognize an Arg-Gly-Asp (RGD) motif within their ligands. Many studies have shown that alternations in the residues in or flanking the RGD motif of RGD-containing proteins affect their binding specificities and affinities for integrins. For example, disintegrins containing a RGDW motif exhibit higher inhibitory activity for integrin αIIbβ3, and disintegrins containing an RGDN motif selectively bind to integrins αvβ3 and α5β1. Rhodostomin (Rho) is the most potent integrin inhibitor, which is isolated from snake venom and contains a PRGDMP motif and 68 amino acid residues. In this study I used Rho as a protein scaffold to study the role of the ARGDMX motif of RGD-containing disintegrins in recognition of integrins. I have successfully expressed and purified eighteen Rho ARGDMX mutants in P. pastoris. There is no significant difference between Rho and these mutants in inhibiting platelet aggregation. The mutation on the ARGDMX motif of Rho caused 0.8-30.7-, 2.9-150.2-, and 0.2-65.4-folds decreases in inhibiting integrins αvβ3, αIIbβ3, and α5β1 in comparison with those of Rho. The relative sensitivity of this position were α5β1 (285-fold) > αIIbβ3 (52-fold) > αvβ3 (40-fold), showing that the X position of the ARGDMX motif in Rho is very sensitive to integrin α5β1 but not to integrins αvβ3 and αIIbβ3. The results also showed that Rho mutants with hydrophobic amino acid residues, such as W, F, Y, I, V, and A, exhibited higher affinity for integrin αvβ3, and Rho mutant with P, V, and T had higher binding affinity to integrin α5β1. In contrast, Rho mutants with charge amino acid residues, such as D, E, K, R, and H, exhibited lower binding affinity for integrin α5β1. We also found that the mutants ARGDMA, ARGDMI, and ARGRMW can selectively inhibit integrin αvβ3. The results of this study will serve as the basis for designing integrins αvβ3 and α5β1-specific disintegrins.
Arnaout, M.A., B. Mahalingam, and J.P. Xiong. 2005. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 21:381-410.
Au, L.C., J.S. Chou, K.J. Chang, G.W. Teh, and S.B. Lin. 1993. Nucleotide sequence of a full-length cDNA encoding a common precursor of platelet aggregation inhibitor and hemorrhagic protein from Calloselasma rhodostoma venom. Biochim Biophys Acta. 1173:243-245.
Avraamides, C.J., B. Garmy-Susini, and J.A. Varner. 2008. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 8:604-617.
Barczyk, M., S. Carracedo, and D. Gullberg. 2010. Integrins. Cell Tissue Res. 339:269-280.
Calvete, J.J., C. Marcinkiewicz, D. Monleon, V. Esteve, B. Celda, P. Juarez, and L. Sanz. 2005. Snake venom disintegrins: evolution of structure and function. Toxicon. 45:1063-1074.
Chang, H.H., S.T. Hu, T.F. Huang, S.H. Chen, Y.H. Lee, and S.J. Lo. 1993. Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun. 190:242-249.
Costa, P., and M. Parsons. 2010. New insights into the dynamics of cell adhesions. Int Rev Cell Mol Biol. 283:57-91.
Dennis, M.S., P. Carter, and R.A. Lazarus. 1993. Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis. Proteins. 15:312-321.
DeSimone, D.W., M.A. Stepp, R.S. Patel, and R.O. Hynes. 1987. The integrin family of cell surface receptors. Biochem Soc Trans. 15:789-791.
Faull, R.J., X. Du, and M.H. Ginsberg. 1994. Receptors on platelets. Methods Enzymol. 245:183-194.
Goh, K.L., J.T. Yang, and R.O. Hynes. 1997. Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development. 124:4309-4319.
Guo, R.T., L.J. Chou, Y.C. Chen, C.Y. Chen, K. Pari, C.J. Jen, S.J. Lo, S.L. Huang, C.Y. Lee, T.W. Chang, and W.J. Chaung. 2001. Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins. 43:499-508.
Heckmann, D., A. Meyer, L. Marinelli, G. Zahn, R. Stragies, and H. Kessler. 2007. Probing Integrin Selectivity: Rational Design of Highly Active and Selective Ligands for the α5β1 and αvβ3 Integrin Receptor. Angewandte Chemie International Edition. 46:3571-3574.
Hodivala-Dilke, K.M., A.R. Reynolds, and L.E. Reynolds. 2003. Integein in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res. 314:131-144.
Huang, T.F., C.H. Yeh, and W.B. Wu. 2001. Viper venom components affecting angiogenesis. Haemostasis. 31:192-206.
Huang, T.F.W., Y. J. Ouyang, C. 1987. Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta. 925:248-257.
Humphries, M.J. 2001. Cell-substrate adhesion assays. Curr Protoc Cell Biol. Chapter 9:Unit 9 1.
Hynes, R.O. 1987. Integrins: a family of cell surface receptors. Cell. 48:549-554.
Kim, S., K. Bell, S.A. Mousa, and J.A. Varner. 2000a. Regulation of Angiogenesis in Vivo by Ligation of Integrin a5b1 with the Central Cell-Binding Domain of Fibronectin. American Journal of Pathology. 156:1345-1362.
Kim, S., M. Harris, and J.A. Varner. 2000b. Regulation of Integrin avb3-mediated Endothelial Cell Migration and Angiogenesis by Integrin a5b1 and Protein Kinase A. THE JOURNAL OF BIOLOGICAL CHEMISTRY. 275:33929-33928.
Koivunen, E., B. Wang, and E. Ruoslahti. 1994. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol. 124:373-380.
Koivunen, E., B. Wang, and E. Ruoslahti. 1995. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y). 13:265-270.
Lee, J.O., P. Rieu, M.A. Arnaout, and R. Liddington. 1995. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell. 80:631-638.
Li, R., R.H. Hoess, J.S. Bennett, and W.F. DeGrado. 2003. Use of phage display to probe the evolution of binding specificity and affinity in integrins. Protein Eng. 16:65-72.
Lu, X., S. Rahman, V.V. Kakkar, and K.S. Authi. 1996. Substitutions of proline 42 to alanine and methionine 46 to asparagine around the RGD domain of the neurotoxin dendroaspin alter its preferential antagonism to that resembling the disintegrin elegantin. J Biol Chem. 271:289-294.
LU, X., Y. SUN, D. SHANG, B. WATTAM, S. EGGLEZOU, T. HUGHES, E. HYDE, M. SCULLY, and V. KAKKAR. 2001. Evaluation of the role of proline residues flanking the RGD motif of dendroaspin, an inhibitior of platelet aggregation and cell adhesion. Biochem. J. 355:633-638.
Luo, B.H., C.V. Carman, and T.A. Springer. 2007. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 25:619-647.
Matter, M.L., Z. Zhang, C. Nordstedt, and E. Ruoslahti. 1998. The alpha5beta1 integrin mediates elimination of amyloid-beta peptide and protects against apoptosis. J Cell Biol. 141:1019-1030.
Mousa, S.A., M.S. Forsythe, and J.M. Bozarth. 2002. Differential efficacy of different platelet glycoprotein IIb/IIIa antagonists on platelet/fibrin-mediated clot dynamics under different conditions using thrombelastography: the critical need for anticoagulant. Coron Artery Dis. 13:243-248.
Mustard, J., M. Packham, R. Kinlough-Rathbone, D. Perry, and E. Regoeczi. 1978. Fibrinogen and ADP-induced platelet aggregation. Blood. 52:453-466.
Niu, G., and X. Chen. 2011. Why integrin as a primary target for imaging and therapy. Theranostics. 1:30-47.
Rahman, S., A. Aitken, G. Flynn, C. Formstone, and G.F. Savidge. 1998. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. Biochem J. 335 ( Pt 2):247-257.
Ramjaun, A.R., and K. Hodivala-Dilke. 2009. The role of cell adhesion pathways in angiogenesis. Int J Biochem Cell Biol. 41:521-530.
Reddig, P.J., and R.L. Juliano. 2005. Clinging to life: cell to matrix adhesion and cell survival. Cancer and Metastasis Reviews. 24:425-439.
Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 12:697-715.
Scarborough, R.M., J.W. Rose, M.A. Naughton, D.R. Phillips, L. Nannizzi, A. Arfsten, A.M. Campbell, and I.F. Charo. 1993. Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem. 268:1058-1065.
Schagger, H., T.A. Link, W.D. Engel, and G. von Jagow. 1986. Isolation of the eleven protein subunits of the bc1 complex from beef heart. Methods Enzymol. 126:224-237.
Shimaoka, M., and T.A. Springer. 2003. Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov. 2:703-716.
Springer, T.A., and J.H. Wang. 2004. The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv Protein Chem. 68:29-63.
Takada, Y., X. Ye, and S. Simon. 2007. The integrins. Genome Biol. 8:215.
Takagi, J. 2007. Structural basis for ligand recognition by integrins. Curr Opin Cell Biol. 19:557-564.
Tamkun, J.W., D.W. DeSimone, D. Fonda, R.S. Patel, C. Buck, A.F. Horwitz, and R.O. Hynes. 1986. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 46:271-282.
Temming, K., R.M. Schiffelers, G. Molema, and R.J. Kok. 2005. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat. 8:381-402.
Veis, A., and C.F. Nawrot. 1970. Basicity Differences among Peptide Bonds. Journal of the American Chemical Society. 92:3910-3914.
Wierzbicka-Patynowski, I., S. Niewiarowski, C. Marcinkiewicz, J.J. Calvete, M.M. Marcinkiewicz, and M.A. McLane. 1999. Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem. 274:37809-37814.
Wozniak, M.A., K. Modzelewska, L. Kwong, and P.J. Keely. 2004. Focal adhesion regulation of cell behavior. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1692:103-119.
Xiao, T., J. Takagi, B.S. Coller, J.H. Wang, and T.A. Springer. 2004. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 432:59-67.
Xiong, J.P., T. Stehle, B. Diefenbach, R. Zhang, R. Dunker, D.L. Scott, A. Joachimiak, S.L. Goodman, and M.A. Arnaout. 2001. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 294:339-345.
Xiong, J.P., T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S.L. Goodman, and M.A. Arnaout. 2002. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 296:151-155.
Yeh, C.H., H.C. Peng, R.S. Yang, and T.F. Huang. 2001. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol Pharmacol. 59:1333-1342.
郭瑞庭 馬來蝮蛇蛇毒基因的選殖及蛇毒蛋白之功能及三度空間結構之研究。國立成功大學生物化學研究所碩士論文,1998。
陳秋月 利用馬來蝮蛇去整合蛋白以研究整合蛋白們所辨識的序列和製備胺基酸選擇性同位素標示的蛋白。國立成功大學基礎醫學研究所博士論文,2005。
杜威德 利用Rhodostomin當模板設計具整合蛋白a5b1專一性之拮抗劑。國立成功大學生物化學研究所碩士論文,2006。
校內:2021-12-31公開