| 研究生: |
陳碩穎 Chen, Shuo-Ying |
|---|---|
| 論文名稱: |
高分子奈米碳管複合材料之製備及其電熱性質之研究 Fabrication of CNT/Phenolic Nano-Composite and Its Electrical & Thermal Conductivity Measurements |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 奈米複合材料 、奈米碳管 、熱傳導係數 、導電係數 、酚醛樹脂 、官能基化奈米碳管 |
| 外文關鍵詞: | thermal conductivity, phenolic resin(PR), functionalized CNTs, CNTs, nanocomposite, electrical resistivity |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從發現奈米碳管以來,近10幾年來關於奈米碳管材料的性質及其應用的研究不曾間斷。這種新穎的一維奈米尺度材料,具有高強度與模數的特性,非常適合當作高分子的補強材;此外,其獨特的高熱傳導率及高導電率,使其可應用的範圍更為廣大。
本文即以研究多壁奈米碳管添加入酚醛樹脂的複合材料(MWNT/Phenolic),探討不同比例的碳管含量,對複合材料熱傳導係數及電性質的影響。我們使用酒精當溶劑,加入MWNT及酚醛樹脂,經由超音波震盪及磁石攪拌使其充分混和均勻後,放入適當的模具熱壓成型,再拿去量測。導電性使用四點探針量測,熱傳導係數則是使用熱傳導分析儀(Laser Flash LFA-447 Modify ASTM E1461) 量測。實驗結果可知,當奈米碳管濃度加至10 wt%,熱傳導係數由0.612 W/m*K提昇至1.473 W/m*K;而電性方面,導電度由0 ms提昇至135.52 ms,皆有明顯的提升。
為了更進一步將碳管分散於酚醛樹脂中,使用羧化的處理所得之羧化奈米碳管(c-MWNT)與介面活性劑SDS改質所得之SDS-MWNT,針對奈米碳管作不同的改質方法,探討其分散的狀況及對複合材料熱傳導係數及電性質的影響。由TEM可知,羧化後的碳管,其長度明顯變短;而經由介面活性劑SDS改值後的碳管,其外觀則無太大改變。經由分光光譜儀量測,羧化過的碳管,在酒精中的吸收光譜,比同濃度的SDS-MWNT及未改質的MWNT來的高,可推測具有較佳的分散效果。而經由SDS改質過的碳管,對於含同比例未改質碳管的複合材料,其熱傳導係數與導電度皆有提升。
Since discovery of the carbon nanotubes (CNTs), the material properties and their applications have been extensively studied over the last decade. This 1-D nano material has some excellent mechanical properties, such as, high tensile strength and Young’s modulus, is suitable for making into reinforced nano-composite. In addition, its unique superior thermal conductivity and relatively high electrical conductivity make its applicable range vaster. In this study, different proportions of multi-walled carbon nanotubes (MWNTs) were added into the phenolic resin for reinforcement, and the thermal & electric properties of the resulting nanocomposites were studied experimentally. This done by blending MWNTs with the phenolic resin dissolved in alcohol. After sonication and stirring at room temperature, the sample was then put it into proper mould in order for hot pressing to form square or circular ingot for measurements of electrical and thermal conductivity. The electrical conductivity was measured by four point probe method while the thermal conductivity was measured by thermoconductivity analyzer (Laser Flash LFA-447 Modify ASTM E1461). The results indicate that by adding MWNTs up to 10% in weight, the thermal conductivity of the nanocomposites can increase from 0.612 (W/m*K) to 1.473 (W/m*K) while the electric conductivity increase significantly from 0 (ms) to 135.52 (ms).
In order to further disperse the MWNTs in phenolic resin, two different methods to modify MWNTs, such as carboxyl MWNTs (c-MWNTs) and surfactant (SDS) modified MWNTs (SDS-MWNTs), were adopted. The thermal & electric properties of the nanocomposite reinforced with functionalized MWNTs were studied. The TEM images revealed that the length of c-MWNT was become much shorter, while the length of SDS-MWNT has no significant change. Measurements by UV-vis spectrophotometer indicate that for MWNTs dispersion in alcohol the absorption spectrum of c-MWNTs dispersion is much higher than both the SDS-MWNTs and the as grown MWNTs dispersion. This leads to the results that with better dispersion of SDS-MWNTs in phenolic resin, the thermal conductivity of SDS-MWNT/Phenolic resin nanocomposites is found indeed much higher despite that the surface structure of the MWNTs may be deteriorated by the chemical attack.
1. A, Knop; L.A. Pilato, “Phenolic Resin: Chemistry, Application and Performance,” Springer-Verlag, Berlin, pp1-4(1985).
2. G. Odian, “Principle of Polymerization,” 3rd Edition, Chapter 2, pp125-132(1991).
3. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56, 1991.
4. 村上新一,洪存仁 譯,“酚醛樹脂”復文出版社,台灣台北,1981
5. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load transfer and deformation mechanism in carbon nanotube-polystyrene composites,” Applied Physics Letters (2000), 76(20), 2868–2870.
6. S. Kumar, H. Doshi, M. Strinivasarao, J. O. Park and D. A. Schiraldi,
“Fibers from polypropvlene/nano carbon fiber composites,” Polymer (2002), 43, 1701–1703.
7. A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology 62 (2002) 1993–1998.
8. W. Tang, M. H. Santare and S. G. Advani, “Melt processing and mechanical property characterization of multi-walled carbon nanotube/ high density polyethylene (MWNT/HDPE) composite films,” Carbon 41 (2003) 2779-2785.
9. Guangjun Hu, Chungui Zhao, Shimin Zhang, Mingshu Yang, Zhigang Wang, “Low percolation thresholds of electrical conductivity and rheologyin poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes,” Science, 47, 480, 2005.
10. M. F. Sonnenschein, C. M. Roland, “lntersegmental Interaction and Critical Concentrations in PET-HFIP Solutions,” Journal of Polymer Science, Part B: Polymer Physics, v 29, n 4, Mar 30, 431, 1991.
11. N. B. Sanches, M. L. Dias, E. B. A. V. Pacheco, “Comparative techniques for molecular weight evaluation of poly (ethylene terephthalate) (PET),” Polymer Testing, v 24, n 6, 688, 2005.
12. Harold J. Vandenburg, Anthony A. Clifford, Keith D. Bartle, Richard E. Carlson, John Carrollc and Ian D. Newtonc, “A simple solvent selection method for accelerated solvent extraction of additives from polymers,” The Royal Society of Chemistry, 1999.
13. Zhuangjun Fan, Guohua Luo, Zengfu Zhang, Li Zhou, Fei Wei, “Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites,” Materials Science and Engineering B, 132, 85, 2006.
14. Man Wu, Leon L. Shaw, “On the improved properties of injection-molded, carbon nanotube-filled PET/PVDF blends,” Journal of Power Sources, v 136, n 1, 37, 2004.
15. Man Wu, Leon L. Shaw, “A novel concept of carbon-filled polymer blends for applications in PEM fuel cell bipolar plates,” International Journal of Hydrogen Energy, v 30, n 4, 373, 2005.
16. Man Wu, Leon Shaw, “Electrical and Mechanical Behaviors of Carbon Nanotube-Filled Polymer Blends,” Journal of Applied Polymer Science, v 99, n 2, 477, 2006.
17. W. Ni, B. Wang, H. Wang, Y. Zhang, “Fabrication and properties of carbon nanotube and poly(vinyl alcohol) composites,” Journal of Macromolecular Science, Part B: Physics, v 45 B, n 4, 659, 2006.
18. P. Ciambelli, M. Sarno, G. Gorrasi, D. Sannino, M. Tortora, V. Vittoria, “Preparation and Physical Properties of Carbon Nanotubes-PVA Nanocomposites,” Journal of Macromolecular Science - Physics, v 44 B, n 5, 779, 2005.
19. Y. Bin, M. Mine, A. Koganemaru, X. Jiang, M. Matsuo, “Morphology and mechanical and electrical properties of oriented
PVA–VGCF and PVA–MWNT composites,” Polymer, v 47, n 4, 1308, 2006.
20. D. S. Lim, J. W. An and H. J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear 252 (2002) 512–517.
21. Chen-Chi M.Ma, Wei-Jen Chen, Hsin Tai, Chin-Lung Chiang, “Carbon Nano Tube/Phenolic resin nanocomposite–Preparation and properties.”
22. 簡才智, “溫度-濕度效應對多壁奈米碳管/酚醛樹脂複合材料
機械及電性質影響之研究,”清華大學動力機械工程研究所碩士論文,2005.
23. 林彥君, “以多壁奈米碳管及纖維補強酚醛樹脂之複合材料
機械性質研究,”清華大學動力機械工程研究所碩士論文,2005
24. S. C. Tsang, Y. K. Chen, M. L. H. Green, “A simple chemical method of opening and filling carbon nanotubes,” Nature, 372, 159, 1994.
25. H. Hiura, T. W. Ebbesen, K. Tanigaki, “Opening and purification of carbon nanotubes in high yields,” Adv. Mater., 7, 275, 1995.
26. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J.
Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y.S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, “Fullerene Pipes,” Science, 280, 1253, 1998.
27. W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao, Y. P. Sun, “Sonication-assisted functionalization and solubilization of carbon nanotubes,” Nano Lett., 2, 231, 2002.
28. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, “Solution Properties of Single-Walled Carbon Nanotubes,” Science, 282, 95, 1998.
29. Christopher A. Dyke, James M. Tour, “Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions,” Nano Lett., 3, 1215, 2003.
30. Jianfeng Shen, etc…”Study on amino-functionalized multiwalled carbon nanotubes,” Materials Science and Engineering A 464 (2007) 151-156.