| 研究生: |
王郁芷 Wang, Yu-Chih |
|---|---|
| 論文名稱: |
幽門桿菌感染藉由SHP2導致丙型干擾素訊息傳遞的抑制作用 Suppression of IFN-γ Signaling by Src Homology-2 Domain-containing Phosphatase 2 During Helicobacter pylori Infection |
| 指導教授: |
林秋烽
Lin, Chiou-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 幽門桿菌 、丙型干擾素抗性 、SHP2 、CagA 、活性氧分子 |
| 外文關鍵詞: | H. pylori, IFN-γ resistance, SHP2, CagA, ROS |
| 相關次數: | 點閱:119 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
革蘭氏陰性螺旋幽門桿菌的感染不僅會造成胃部發炎反應亦會增加胃癌發生的風險。丙型干擾素具有對抗細菌的能力;然而幽門桿菌感染可誘導丙型干擾素表現的增加進而惡化胃部發炎並利用未知的機制抑制丙型干擾素的抗菌作用以逃脫免疫系統攻擊。本研究著重在探討幽門桿菌負向調控丙型干擾素訊息的機制。丙型干擾素的前處理可減緩胃上皮細胞因感染幽門桿菌而表達cytotoxin-associated gene A (CagA)。感染臨床分離的野生型幽門桿菌菌株HP238與J99以及標準菌株ATCC43504會抑制丙型干擾素誘導SATA1的磷酸化以及干擾素調控因子1啟動子的活化作用。然而,熱致死的HP238無法刺激細胞發生以上現象。HP238活菌感染會刺激Src homology-2 domain-containing phosphatase (SHP) 2蛋白質C端上酪氨酸的磷酸化及下游訊息調控MEK及ERK的磷酸化。利用特異性抑制劑和shRNA干擾的方法證實抑制SHP2可以回復HP238感染所導致丙型干擾素抗性。進一步的研究證實基因突變剔除CagA幽門桿菌菌株HP238CagAm感染則無法造成丙型干擾素抗性以及胃上皮細胞發生hummingbird的形變,可以說明CagA在其中調控的重要角色。值得注意的是HP238CagAm仍會造成SHP2的磷酸化;進一步的影像學和生化分析證明CagA會與磷酸化態的SHP2結合,間接促成膜相關結合的磷酸化SHP2,推測在缺乏CagA的協助下HP238CagAm感染所造成的SHP2磷酸化無法有效抑制丙型干擾素的訊息。最後,實驗證明CagA的表現以及活性氧分子的生成共同促成幽門桿菌感染誘導丙型干擾素抗性。這項發現不僅是提供另一種CagA和活性氧分子如何共同調控SHP2活性的選擇性機制,而且也解釋其在幽門桿菌感染導致丙型干擾素抗性的角色。
Helicobacter pylori (H. pylori), a gram-negative spiral bacteria, infection not only induce gastric inflammation but also increase the risk of gastric tumorigenesis. Interferon (IFN)-γ has antimicrobial effects; however, H. pylori infection elevates IFN-γ-mediated gastric inflammation and may suppress IFN-γ signaling as a strategy to avoid immune destruction through an as-yet unknown mechanism. This study was aimed at investigating the mechanism of H. pylori-induced IFN-γ resistance. Pre-treatment of IFN-γ decreased cytotoxin-associated gene A (CagA) expression following H. pylori infection. Post-infection viable, but not heat-killed, clinical isolates of wild-type H. pylori strain HP238 decreased IFN-γ-induced phosphorylation of signal transducers and activators of transcription 1 and promoter transactivation of IFN-regulatory factor 1. HP238 infection caused an increase in the C-terminal tyrosine phosphorylation of Src homology-2 domain-containing phosphatase (SHP) 2 and its downstream signaling of MEK/ERK. Inhibiting SHP2 by using specific inhibitors and shRNA interference reversed HP238-induced IFN-γ resistance. The CagA isogenic mutant strain HP238CagAm failed to induce IFN-γ resistance and morphological change known as hummingbird phenomenon, indicating that CagA regulates these effects. Notably, HP238 and HP238CagAm both caused SHP2 phosphorylation; furthermore, imaging and biochemical analyses demonstrated CagA-mediated membrane-associated binding with phosphorylated SHP2. Without CagA, HP238CagAm infection only did not cause IFN-γ resistance even SHP2 is phosphorylated. CagA-independent generation of reactive oxygen species (ROS) contributed to H. pylori-induced SHP2 phosphorylation and IFN-γ resistance when CagA was concurrently present. This finding not only provides an alternative mechanism for how CagA and ROS co-regulate SHP2 activation but may also explain their roles in H. pylori-induced IFN-γ suppression of IFN-γ signaling.
Akhiani, A.A., Pappo, J., Kabok, Z., Schon, K., Gao, W., Franzen, L.E. and Lycke, N. (2002). Protection against Helicobacter pylori infection following immunization is IL-12-dependent and mediated by Th1 cells. The Journal of Immunology 169, 6977-6984.
Algood, H.M. and Cover, T.L. (2006). Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clinical microbiology reviews 19, 597-613.
Allison, C.C., Ferrand, J., McLeod, L., Hassan, M., Kaparakis-Liaskos, M., Grubman, A., et al. (2013). Nucleotide Oligomerization Domain 1 Enhances IFN-gamma Signaling in Gastric Epithelial Cells during Helicobacter pylori Infection and Exacerbates Disease Severity. The Journal of Immunology 190, 3706-3715.
Atherton, J.C., Cao, P., Peek, R.M., Jr., Tummuru, M.K., Blaser, M.J. and Cover, T.L. (1995). Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. The Journal of biological chemistry 270, 17771-17777.
Backert, S. and Clyne, M. (2011). Pathogenesis of Helicobacter pylori infection. Helicobacter 16 Suppl 1, 19-25.
Baron, M. and Davignon, J.L. (2008). Inhibition of IFN-gamma-induced STAT1 tyrosine phosphorylation by human CMV is mediated by SHP2. The Journal of Immunology 181, 5530-5536.
Blanchette, J., Racette, N., Faure, R., Siminovitch, K.A. and Olivier, M. (1999). Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. European journal of immunology 29, 3737-3744.
Cha, B., Lim, J.W., Kim, K.H. and Kim, H. (2010). HSP90beta interacts with Rac1 to activate NADPH oxidase in Helicobacter pylori-infected gastric epithelial cells. The international journal of biochemistry & cell biology 42, 1455-1461.
Charest, A., Wilker, E.W., McLaughlin, M.E., Lane, K., Gowda, R., Coven, S., et al. (2006). ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer research 66, 7473-7481.
Costa, A.C., Figueiredo, C. and Touati, E. (2009). Pathogenesis of Helicobacter pylori infection. Helicobacter 14 Suppl 1, 15-20.
Delahay, R.M. and Rugge, M. (2012). Pathogenesis of Helicobacter pylori infection. Helicobacter 17 Suppl 1, 9-15.
Eaton, K.A., Benson, L.H., Haeger, J. and Gray, B.M. (2006). Role of transcription factor T-bet expression by CD4+ cells in gastritis due to Helicobacter pylori in mice. Infection and immunity 74, 4673-4684.
el Ouahabi, A., Lorenzo, A.V. and Black, P.M. (1992). Study of pseudotumor cerebri in vitamin A deficient rabbit. European journal of pediatric surgery 2, 43-44.
Galmiche, A., Rassow, J., Doye, A., Cagnol, S., Chambard, J.C., Contamin, S., et al. (2000). The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. The EMBO journal 19, 6361-6370.
Handa, O., Naito, Y. and Yoshikawa, T. (2010). Helicobacter pylori: a ROS-inducing bacterial species in the stomach. Inflammation research 59, 997-1003.
Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature reviews. Cancer 4, 688-694.
Hatakeyama, M. and Higashi, H. (2005). Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer science 96, 835-843.
Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M. and Hatakeyama, M. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683-686.
Hu, X. and Ivashkiv, L.B. (2009). Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31, 539-550.
Kraft, M., Riedel, S., Maaser, C., Kucharzik, T., Steinbuechel, A., Domschke, W. and Luegering, N. (2001). IFN-gamma synergizes with TNF-alpha but not with viable H. pylori in up-regulating CXC chemokine secretion in gastric epithelial cells. Clinical and experimental immunology 126, 474-481.
Kusters, J.G., van Vliet, A.H. and Kuipers, E.J. (2006). Pathogenesis of Helicobacter pylori infection. Clinical microbiology reviews 19, 449-490.
Kwok, T., Zabler, D., Urman, S., Rohde, M., Hartig, R., Wessler, S., et al. (2007). Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449, 862-866.
Kwon, J., Qu, C.K., Maeng, J.S., Falahati, R., Lee, C. and Williams, M.S. (2005). Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76-ADAP. The EMBO journal 24, 2331-2341.
Lucero, H.A., Ravid, K., Grimsby, J.L., Rich, C.B., DiCamillo, S.J., Maki, J.M., et al. (2008). Lysyl oxidase oxidizes cell membrane proteins and enhances the chemotactic response of vascular smooth muscle cells. The Journal of biological chemistry 283, 24103-24117.
Maeda, S. and Mentis, A.F. (2007). Pathogenesis of Helicobacter pylori infection. Helicobacter 12 Suppl 1, 10-14.
Matozaki, T., Murata, Y., Saito, Y., Okazawa, H. and Ohnishi, H. (2009). Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer science 100, 1786-1793.
Menaker, R.J., Ceponis, P.J. and Jones, N.L. (2004). Helicobacter pylori induces apoptosis of macrophages in association with alterations in the mitochondrial pathway. Infection and immunity 72, 2889-2898.
Meng, T.C., Fukada, T. and Tonks, N.K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular cell 9, 387-399.
Meyer, F., Wilson, K.T. and James, S.P. (2000). Modulation of innate cytokine responses by products of Helicobacter pylori. Infection and immunity 68, 6265-6272.
Mitchell, D.J., Huynh, H.Q., Ceponis, P.J., Jones, N.L. and Sherman, P.M. (2004). Helicobacter pylori disrupts STAT1-mediated gamma interferon-induced signal transduction in epithelial cells. Infection and immunity 72, 537-545.
Murata-Kamiya, N., Kurashima, Y., Teishikata, Y., Yamahashi, Y., Saito, Y., Higashi, H., et al. (2007). Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26, 4617-4626.
Nagy, T.A., Frey, M.R., Yan, F., Israel, D.A., Polk, D.B. and Peek, R.M., Jr. (2009). Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling. The Journal of infectious diseases 199, 641-651.
Naito, Y. and Yoshikawa, T. (2002). Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress. Free radical biology & medicine 33, 323-336.
Najjar, I. and Fagard, R. (2010). STAT1 and pathogens, not a friendly relationship. Biochimie 92, 425-444.
Nakayama, M., Hisatsune, J., Yamasaki, E., Isomoto, H., Kurazono, H., Hatakeyama, M., et al. (2009). Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. The Journal of biological chemistry 284, 1612-1619.
Neel, B.G., Gu, H. and Pao, L. (2003). The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in biochemical sciences 28, 284-293.
Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W. and Haas, R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497-1500.
Ohnishi, N., Yuasa, H., Tanaka, S., Sawa, H., Miura, M., Matsui, A., et al. (2008). Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proceedings of the National Academy of Sciences of the United States of America 105, 1003-1008.
Park, S.J., Kim, H.Y., Kim, H., Park, S.M., Joe, E.H., Jou, I. and Choi, Y.H. (2009). Oxidative stress induces lipid-raft-mediated activation of Src homology 2 domain-containing protein-tyrosine phosphatase 2 in astrocytes. Free radical biology & medicine 46, 1694-1702.
Peek, R.M., Jr. and Blaser, M.J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature reviews. Cancer 2, 28-37.
Peek, R.M., Jr., Fiske, C. and Wilson, K.T. (2010). Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiological reviews 90, 831-858.
Radosz-Komoniewska, H., Bek, T., Jozwiak, J. and Martirosian, G. (2005). Pathogenicity of Helicobacter pylori infection. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 11, 602-610.
Samayawardhena, L.A., Hu, J., Stein, P.L. and Craig, A.W. (2006). Fyn kinase acts upstream of Shp2 and p38 mitogen-activated protein kinase to promote chemotaxis of mast cells towards stem cell factor. Cellular signalling 18, 1447-1454.
Sawai, N., Kita, M., Kodama, T., Tanahashi, T., Yamaoka, Y., Tagawa, Y., et al. (1999). Role of gamma interferon in Helicobacter pylori-induced gastric inflammatory responses in a mouse model. Infection and immunity 67, 279-285.
Sayi, A., Kohler, E., Hitzler, I., Arnold, I., Schwendener, R., Rehrauer, H. and Muller, A. (2009). The CD4+ T cell-mediated IFN-gamma response to Helicobacter infection is essential for clearance and determines gastric cancer risk. The Journal of Immunology 182, 7085-7101.
Schoenborn, J.R. and Wilson, C.B. (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Advances in immunology 96, 41-101.
Schroder, K., Hertzog, P.J., Ravasi, T. and Hume, D.A. (2004). Interferon-gamma: an overview of signals, mechanisms and functions. Journal of leukocyte biology 75, 163-189.
Selbach, M., Moese, S., Hauck, C.R., Meyer, T.F. and Backert, S. (2002). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. The Journal of biological chemistry 277, 6775-6778.
Serrano, C., Diaz, M.I., Valdivia, A., Godoy, A., Pena, A., Rollan, A., et al. (2007). Relationship between Helicobacter pylori virulence factors and regulatory cytokines as predictors of clinical outcome. Microbes and infection / Institut Pasteur 9, 428-434.
Sheu, S.M., Sheu, B.S., Yang, H.B., Li, C., Chu, T.C. and Wu, J.J. (2002). Presence of iceA1 but not cagA, cagC, cagE, cagF, cagN, cagT, or orf13 genes of Helicobacter pylori is associated with more severe gastric inflammation in Taiwanese. Journal of the Formosan Medical Association 101, 18-23.
Smyth, D., McKay, C.M., Gulbransen, B.D., Phan, V.C., Wang, A. and McKay, D.M. (2012). Interferon-gamma signals via an ERK1/2-ARF6 pathway to promote bacterial internalization by gut epithelia. Cellular microbiology 14, 1257-1270.
Sommer, F., Faller, G., Rollinghoff, M., Kirchner, T., Mak, T.W. and Lohoff, M. (2001). Lack of gastritis and of an adaptive immune response in interferon regulatory factor-1-deficient mice infected with Helicobacter pylori. European journal of immunology 31, 396-402.
Song, M.M. and Shuai, K. (1998). The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. The Journal of biological chemistry 273, 35056-35062.
Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W.J. and Covacci, A. (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Molecular microbiology 43, 971-980.
Straubinger, R.K., Greiter, A., McDonough, S.P., Gerold, A., Scanziani, E., Soldati, S., et al. (2003). Quantitative evaluation of inflammatory and immune responses in the early stages of chronic Helicobacter pylori infection. Infection and immunity 71, 2693-2703.
Suerbaum, S. and Michetti, P. (2002). Helicobacter pylori infection. The New England journal of medicine 347, 1175-1186.
Sundrud, M.S., Torres, V.J., Unutmaz, D. and Cover, T.L. (2004). Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proceedings of the National Academy of Sciences of the United States of America 101, 7727-7732.
Tabassam, F.H., Graham, D.Y. and Yamaoka, Y. (2009). Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-OH kinase-dependent Akt and glycogen synthase kinase 3beta phosphorylation. Cellular microbiology 11, 70-82.
Takaoka, A. and Yanai, H. (2006). Interferon signalling network in innate defence. Cellular microbiology 8, 907-922.
Teshima, S., Tsunawaki, S. and Rokutan, K. (1999). Helicobacter pylori lipopolysaccharide enhances the expression of NADPH oxidase components in cultured guinea pig gastric mucosal cells. FEBS letters 452, 243-246.
Thye, T., Burchard, G.D., Nilius, M., Muller-Myhsok, B. and Horstmann, R.D. (2003). Genomewide linkage analysis identifies polymorphism in the human interferon-gamma receptor affecting Helicobacter pylori infection. American journal of human genetics 72, 448-453.
Torres, J. and Backert, S. (2008). Pathogenesis of Helicobacter pylori infection. Helicobacter 13 Suppl 1, 13-17.
Tsai, C.C., Kai, J.I., Huang, W.C., Wang, C.Y., Wang, Y., Chen, C.L., et al. (2009). Glycogen synthase kinase-3beta facilitates IFN-gamma-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. The Journal of Immunology 183, 856-864.
Tseng, P.C., Huang, W.C., Chen, C.L., Sheu, B.S., Shan, Y.S., Tsai, C.C., et al. (2012). Regulation of SHP2 by PTEN/AKT/GSK-3beta signaling facilitates IFN-gamma resistance in hyperproliferating gastric cancer. Immunobiology 217, 926-934.
Tu, S.P., Quante, M., Bhagat, G., Takaishi, S., Cui, G., Yang, X.D., et al. (2011). IFN-gamma inhibits gastric carcinogenesis by inducing epithelial cell autophagy and T-cell apoptosis. Cancer research 71, 4247-4259.
Wang, H., Brown, J. and Martin, M. (2011). Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine 53, 130-140.
Wang, Y.H., Wu, J.J. and Lei, H.Y. (2009). The autophagic induction in Helicobacter pylori-infected macrophage. Exp Biol Med (Maywood) 234, 171-180.
Won, K.J., Lee, H.M., Lee, C.K., Lin, H.Y., Na, H., Lim, K.W., et al. (2011). Protein tyrosine phosphatase SHP-2 is positively involved in platelet-derived growth factor-signaling in vascular neointima formation via the reactive oxygen species-related pathway. Journal of pharmacological sciences 115, 164-175.
Wu, T.R., Hong, Y.K., Wang, X.D., Ling, M.Y., Dragoi, A.M., Chung, A.S., et al. (2002). SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. The Journal of biological chemistry 277, 47572-47580.
Yamamoto, T., Kita, M., Ohno, T., Iwakura, Y., Sekikawa, K. and Imanishi, J. (2004). Role of tumor necrosis factor-alpha and interferon-gamma in Helicobacter pylori infection. Microbiology and immunology 48, 647-654.
Yamaoka, Y., Kita, M., Kodama, T., Sawai, N., Kashima, K. and Imanishi, J. (1995). Expression of cytokine mRNA in gastric mucosa with Helicobacter pylori infection. Scandinavian journal of gastroenterology 30, 1153-1159.
Yokoyama, K., Higashi, H., Ishikawa, S., Fujii, Y., Kondo, S., Kato, H., et al. (2005). Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proceedings of the National Academy of Sciences of the United States of America 102, 9661-9666.
Yoshimura, A., Naka, T. and Kubo, M. (2007). SOCS proteins, cytokine signalling and immune regulation. Nature reviews. Immunology 7, 454-465.
You, M., Yu, D.H. and Feng, G.S. (1999). Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Molecular and cellular biology 19, 2416-2424.
Yun, J.H., Park, S.J., Jo, A., Kang, J.L., Jou, I., Park, J.S. and Choi, Y.H. (2011). Caveolin-1 is involved in reactive oxygen species-induced SHP-2 activation in astrocytes. Experimental & molecular medicine 43, 660-668.
Zhao, Y., Zhou, Y., Sun, Y., Yu, A., Yu, H., Li, W., et al. (2011). Virulence factor cytotoxin-associated gene A in Helicobacter pylori is downregulated by interferon-gamma in vitro. FEMS immunology and medical microbiology 61, 76-83.