| 研究生: |
張峻維 Chang, Chun-Wei |
|---|---|
| 論文名稱: |
以數值及實驗方法預測具有相變化材料及穿孔隔板之等腰稜柱形屋頂內之自然對流熱傳特徵 Numerical and Experimental Study on the Prediction of Natural Convection Heat Transfer Characteristics in Isosceles Prismatic Roof with Perforated Partition and Phase Change Material |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 計算流體力學 、逆向數值方法 、自然對流 、被動式建築 |
| 外文關鍵詞: | Computational Fluid Dynamics, Inverse Numerical Method, Natural Convection, Passive Building |
| 相關次數: | 點閱:68 下載:33 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以封閉稜柱型空腔與加熱片模擬屋頂閣樓與日照,並結合相變化材料、隔板以及穿孔等變因探討內部之流場趨勢與熱傳特徵。
以最小平方法配合實驗數據推估未知熱源Q,藉此設定模擬之熱源使其結果符合實驗數據。再將各紊流模型之CFD結果分別與實驗溫度點進行比較,得到最適切之紊流模型。
以經驗公式計算之熱流係數與和各紊流模型之數值結果相互比較,可以發現zero equation之誤差最小。其溫度點與實驗結果之方均根誤差僅有0.6%,故以此紊流模型做本文之後續分析。最後以所選擇之模型進行模擬,將實驗不易獲得之熱傳特性計算而出,且透過後處理進一步將計算結果之溫度分布圖與速度分布圖呈現,並進行流場趨勢分析與探討。
大傾斜角之熱對流係數相較於小傾斜角之值提高約10%,且隔板頂部流場之速度提升明顯,對流效應較佳。且隔板穿孔將形成煙囪效應造成明顯之上升氣流,穿孔大小對於隔板上方熱對流效應呈正相關。以空氣傳熱給相變化材料之效能微乎其微,且其設置位置應進行深入探討。
此研究能夠對被動式建築之設計提供節能方法,呼應越發緊張之能源危機。
In this article, a closed prismatic cavity and heating fins are used to simulate the attic and sunlight on the roof, and the internal flow field trend and heat transfer characteristics are discussed in combination with variables such as phase change materials, partitions, and perforations.
Estimate the unknown heat source Q by using the least squares method with the experimental data, so as to set the simulated heat source so that the result conforms to the experimental data. Then compare the CFD results of each turbulence model with the experimental temperature points to obtain the most suitable turbulence model.
Comparing the heat flow coefficient calculated by the empirical formula with the numerical results of various turbulent flow models, it can be found that the error of the zero equation is the smallest. The root mean square error between the temperature point and the experimental results is only 0.6%, so this turbulent flow model is used for subsequent analysis in this paper.
The heat convection coefficient of the large inclination angle is about 10% higher than that of the small inclination angle, and the speed of the flow field at the top of the partition is significantly improved, and the convection effect is better. And the perforation of the partition will form the chimney effect and cause obvious updraft, and the size of the perforation is positively correlated with the thermal convection effect above the partition. The efficiency of heat transfer to phase change materials with air is negligible, and its placement should be further investigated.
This research can provide energy-saving methods for the design of passive buildings, responding to the increasingly tense energy crisis.
1. X. Shi and J.M. Khodadadi, Laminar Natural Convection Heat Transfer in a Differentially Heated Square Cavity Due to a Thin Fin on the Hot Wall. Journal of Heat Transfer, 2003. 125(4): p. 624-634.
2. E. Bilgen, Natural convection in cavities with a thin fin on the hot wall. International Journal of Heat and Mass Transfer, 2005. 48(17): p. 3493-3505.
3. A. Elatar, M.A. Teamah, and M.A. Hassab, Numerical study of laminar natural convection inside square enclosure with single horizontal fin. International Journal of Thermal Sciences, 2016. 99: p. 41-51.
4. A. Kadari, N.-E. Sad Chemloul, and S. Mekroussi, Numerical Investigation of Laminar Natural Convection in a Square Cavity With Wavy Wall and Horizontal Fin Attached to the Hot Wall. Journal of Heat Transfer, 2018. 140(7).
5. E.M. Sparrow, A. Haji-Sheikh, and T.S. Lundgren, The Inverse Problem in Transient Heat Conduction. Journal of Applied Mechanics, 1964. 31(3): p. 369-375.
6. Y.L. Chan and C.L. Tien, A numerical study of two-dimensional laminar natural convection in shallow open cavities. International Journal of Heat and Mass Transfer, 1985. 28(3): p. 603-612.
7. Q. Chen and W. Xu, A zero-equation turbulence model for indoor airflow simulation. Energy and Buildings, 1996. 28: p. 137-144.
8. H.-T. Chen, M.-C. Lin, and J.-R. Chang, Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall. International Journal of Heat and Mass Transfer, 2018. 124: p. 1217-1229.
9. J. Salat, S. Xin, P. Joubert, A. Sergent, F. Penot, and P. Le Quéré, Experimental and numerical investigation of turbulent natural convection in a large air-filled cavity. International Journal of Heat and Fluid Flow, 2004. 25(5): p. 824-832.
10. T. Wu and C. Lei, On numerical modelling of conjugate turbulent natural convection and radiation in a differentially heated cavity. International Journal of Heat and Mass Transfer, 2015. 91: p. 454-466.
11. H.-T. Chen, W.-Y. Su, Y.-J. Zheng, T.-S. Yang, and K.-X. Chen, Prediction of 3D natural convection heat transfer characteristics in a shallow enclosure with experimental data. Progress in Nuclear Energy, 2022. 153.
12. H.-T. Chen, M.-H. Hsu, Y.-C. Huang, and K.-H. Chang, Experimental and numerical study of inverse natural convection-conduction heat transfer in a cavity with a fin. Numerical Heat Transfer, Part A: Applications, 2023: p. 1-18.
13. J. Ravnik, L. Škerget, and Z. Žunič, Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM. International Journal of Heat and Mass Transfer, 2008. 51(17-18): p. 4517-4527.
14. E.M. Sparrow, J.C.K. Tong, and J.P. Abraham, Fluid Flow in a System with Separate Laminar and Turbulent Zones. Numerical Heat Transfer, Part A: Applications, 2008. 53(4): p. 341-353.
15. H.F. Oztop, Y. Varol, and A. Koca, Laminar natural convection heat transfer in a shed roof with or without eave for summer season. Applied Thermal Engineering, 2007. 27(13): p. 2252-2265.
16. K.A. Joudi, I.A. Hussein, and A.A. Farhan, Computational model for a prism shaped storage solar collector with a right triangular cross section. Energy Conversion and Management, 2004. 45(3): p. 391-409.
17. R.S. Abdulrahman, F.A. Ibrahim, and S.F. Dakhil, Development of paraffin wax as phase change material based latent heat storage in heat exchanger. Applied Thermal Engineering, 2019. 150: p. 193-199.
18. D. Li, Y. Wu, G. Zhang, M. Arıcı, C. Liu, and F. Wang, Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption. Applied Energy, 2018. 222: p. 343-350.
19. V. Dubovsky, G. Ziskind, and R. Letan, Effect of windows on temperature moderation by a phase-change material (PCM) in a structure in winter. Energy Conversion and Management, 2014. 87: p. 1324-1331.
20. M. Pomianowski, P. Heiselberg, and Y. Zhang, Review of thermal energy storage technologies based on PCM application in buildings. Energy and Buildings, 2013. 67: p. 56-69.
21. J. Gasia, L. Miró, A. de Gracia, C. Barreneche, and L. Cabeza, Experimental Evaluation of a Paraffin as Phase Change Material for Thermal Energy Storage in Laboratory Equipment and in a Shell-and-Tube Heat Exchanger. Applied Sciences, 2016. 6(4).
22. V.S. Arpaci, S.-H. Kao, and A. Selamet, Introduction to heat transfer. 1999: Prentice Hall.
23. 許名勛, 四管於封閉空腔內之三維自然對流的熱傳特性研究. 2021.
24. S.W. Churchill and H.H.S. Chu, Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer, 1975. 18(11): p. 1323-1329.
25. B. Rich, An investigation of heat transfer from an inclined flat plate in free convection. Transactions of the American Society of Mechanical Engineers, 1953. 75(4): p. 489-498.
26. I. Catton. Natural convection in enclosures. in International Heat Transfer Conference Digital Library. 1978. Begel House Inc.
27. 蘇威諺, 三維CFD逆向方法於矩形空腔內之自然對流的熱傳研究. 2021.