簡易檢索 / 詳目顯示

研究生: 劉鎮洋
Liu, Chen-Yang
論文名稱: 高速荷載下不同鋼材之塑變行為研究
Plastic deformation behaviour of different steels subjected to high strain-rate loading
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 173
中文關鍵詞: 碳鋼撞擊極高速剪切絕熱剪切帶
外文關鍵詞: extreme high speed shearing, impact, carbon steel, adiabatic shear band
相關次數: 點閱:96下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用霍普金森試驗機(split-Hopkinson pressure bar, SHPB)針對不同含碳量之鋼鐵,進行動態壓縮測試以及極高速剪切變形實驗,所使用之材料為符合JIS規範之S15C低碳鋼、S50C中碳鋼與SKS93工具鋼(以下簡稱高碳鋼)之退火材。就動態壓縮測試而言,變形之應變速率為:1.1×103s-1到5.5×103s-1,而變形之溫度區間:25℃到800℃。藉此來探論鋼材碳含量、溫度、應變速率三項變數對鋼鐵動態機械反應的影響,並利用TEM技術分析三種鋼材之微觀組織變化情形。研究結果顯示鋼材的塑流應力隨應變速率增加而增加,並隨溫度上升而下降,且含碳量提高材料的動態塑流應力亦隨之提高。材料的應變速率敏感性係數以及溫度軟化率隨著應變速率增加而增加,隨溫度增加而減少,並且提升材料含碳量可以增加鋼材變形時對應變速率與溫度之敏感程度。我們也更進一步計算出三種材料變形時的熱活化能∆G*,在實驗的條件範圍內其最大值分別為:S15C為58KJ/mol、S50C為54.9KJ/mol、而SKS93為56.4KJ/mol。此外,亦發現Zerilli-Armstrong BCC模式之統制方程式可以很準確地描述三種鋼材高速塑流行為。微觀TEM之觀察亦發現差排密度隨應變速率以及含碳量之增加而增加,卻隨溫度上升而減少。
    在極高速動態剪切變形方面,係利用帽型試件(Hat Shaped)將剪切塑流集中於極窄的區域之內,造成絕熱剪切變形。其應變速率控制在5.0×104s-1至2.0×105s-1之範圍,而溫度設定為常溫25℃。結果顯示在低碳鋼S15C試件中只有變形剪切帶(Deformed Shear Band),而中碳鋼S50C與高碳鋼SKS93則同時存有變形剪切帶與變態剪切帶(Transformed Shear Band)。且鋼材之剪切帶寬度隨應變速率以及含碳量增加而減少;然塑流應力卻隨應變速率或是含碳量之增加而增加。在中碳鋼S50C與高碳鋼SKS93之破斷面上可以發現節瘤狀(Knobbly)與韌窩(Dimple)組織兩種形貌,而在低碳鋼S15C之破斷面上僅出現韌窩組織。因為絕熱增溫之關係,隨著應變速率增加,破斷面上節瘤狀形貌面積擴大。就低碳鋼而言,應變速率增加韌窩深度隨之加深。三種鋼材中其破斷面皆未發現劈裂(Cleavage)形貌,顯見此三鋼材在極高速剪切荷載下皆有良好之塑變承受能力。

    In this study, a compressive type split-Hopkinson pressure bar is utilized to compare the high-speed impact plastic behaviour and extreme high-speed shearing plastic behaviour of S15C low carbon steel, S50C medium alloy heat treatable steel (abbreviated hereafter to medium carbon steel) and SKS93 tool steel with a high carbon and low alloy content (abbreviated hereafter to high carbon steel).
    In the first phase of this study, the impact plastic behaviour of the specimens is tested at strain rates ranging from 1.1×103s-1 to 5.5×103s-1 and temperatures ranging from 25℃ to 800℃. The effects of the carbon content, strain rate and temperature on the mechanical responses of the three steels are evaluated. The microstructures of the impacted specimens are studied using a transmission electron microscope (TEM). It is found that an increased carbon content enhances the dynamic flow resistance of the specimens. Additionally, the flow stress increases with strain and strain rate in every case. A thermal softening effect is identified in the plastic behaviour of the three steels. The activation energy, ∆G*, varies as a function of the strain rate and temperature. The maximum ∆G* values of the three steels are found to be 58KJ/mol for the S15C low carbon steel, 54.9KJ/mol for the S50C medium carbon steel, and 56.4 KJ/mol for the SKS93 high carbon steel. A Zerilli-Armstrong BCC constitutive model with appropriate coefficients is applied to describe the high strain rate plastic behaviour of the current specimens. The error between the calculated stress and the measured stress is found to be less than 5%. The microstructural observations reveal that the dislocation density and the degree of dislocation tangling both increase with increasing strain rate in all three steels. Additionally, the TEM observations indicate that a higher strain rate reduces the size of the dislocation cells. The annihilation of dislocations occurs more readily at elevated temperatures. The square root of the dislocation density increases linearly with the work hardening stress.
    In the high-speed shearing tests, hat-shaped specimens of the three carbon steels are deformed at strain rates ranging from 5.0×104s-1 to 2.0×105s-1. It is found that the low carbon steel specimens have only a deformed shear band, while the medium and high carbon steel specimens have both deformed and transformed shear bands. In all specimens, the local shear strain decreases with increasing distance from the centre of the shear band. Furthermore, the shear flow stress increases with increasing carbon content and strain rate. The average temperature rise within the shear bands of the three steels is found to vary as an increasing function of the strain, carbon content and strain rate. Conversely, the width of the shear band decreases with increasing carbon content and strain rate. Scanning electron microscopy (SEM) observations show that the fracture surfaces of the S50C and SKS93 steel specimens contain knobbly features and dimples. However, the fracture surface of the S15C low carbon steel specimen has only dimples. In all cases, the area of the knobbly region increases with increasing strain rate and carbon content, while the size of the dimple area reduces.
    The current results provide a valuable reference for the application of S15C low carbon steel, S50C medium carbon steel, and SKS93 high carbon steel in high-speed plastic forming processes.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 X 圖目錄 XI 符號說明 XVII 第一章 前言 1 第二章 文獻及理論回顧 7 2.1 簡述霍普金森試驗機的發展 7 2.2 霍普金森試驗機之基礎理論 9 2.2.1 長桿中彈性波波傳理論簡介 9 2.2.2 霍普金森試驗機理論與實驗資料計算 12 2.2.3 波散效應-霍普金森試驗機的先天障礙 15 2.3 絕熱剪切 18 2.3.1 絕熱剪切現象 18 2.3.2 壓縮式霍普金森試驗機上的絕熱剪切試驗 25 2.4高速塑性變形機制 26 2.4.1 熱活化機制 28 2.4.2 差排黏滯機制 30 2.5 變形本構方程式 32 2.5.1 經驗本構方程式 33 2.5.1.1 Ludwick 方程式 33 2.5.1.2 Klopp, Clifton and Shawki 方程式 34 2.5.1.3 Johnson-Cook (J-C model)方程式 34 2.5.2 半經驗本構方程式 35 2.5.3 理論型本構方程式 37 2.6 鋼鐵材料簡述 38 2.6.1 碳鋼 39 2.6.1.1 共析組織 39 2.6.1.2 亞共析(Hypo-eutectoid)與過共析(Hyper-eutectoid)組織 41 2.6.2 合金元素對鋼的影響 41 第三章 實驗方法與步驟 57 3.1材料檢測與試件備製 57 3.1.1材料檢測 57 3.1.2試件備製 58 3.2機械測試 58 3.2.1靜態壓縮測試 58 3.2.2動態壓縮測試設備 59 3.2.3動態壓縮測試步驟 61 3.2.4動態剪切測試 61 3.3顯微觀察 63 3.3.1穿透式電子顯微鏡(Transmission Electron Microscope)觀察 63 3.3.2掃瞄式電子顯微鏡(Scanning Electron Microscopy)觀察 64 3.3.3光學顯微鏡(Optical Microscopy)觀察 64 3.3.4試件退火後之組織 64 第四章 壓縮實驗結果與討論 77 4.1 應力-應變曲線 77 4.2 絕熱溫升 79 4.3 加工硬化率 81 4.4 溫度效應 82 4.5 應變速率與熱活化能 83 4.6 碳鋼之高速變形變形本構方程式 86 4.7 顯微結構分析 88 第五章 極高速剪切變形之實驗結果與討論 131 5.1 材料極高速剪切變形之機械反應 131 5.1.1 絕熱剪切帶的寬度 131 5.1.2 應力-應變曲線 132 5.1.3 絕熱剪切帶變形過程中之平均溫升量 133 5.1.4 應變速率效應 134 5.2 絕熱剪切帶附近之金相微觀組織 135 5.2.1 絕熱剪切帶內剪應變隨變形量之變化 136 5.2.2 絕熱剪切帶內局部剪應變之分佈 137 5.2.3 絕熱剪切帶中的雙晶與相變態 139 5.3 絕熱剪切變形之破壞形貌 140 第六章 結論 159 6.1 高速撞擊塑性變形 159 6.2 極高速剪切塑性變形 160 參考文獻 163

    [1] D. A. Fisher, Steel Making in America, United States Steel Corporation, N. Y., 1949.
    [2] B. Freese, Coal: A human history, Perseus Books Group, M. A., 2003.
    [3] J. W. W. Sullivan, The story of metal, American Society for Metals, Cleveland, Ohio, 1951.
    [4] O. M. Becker, High-speed steel, McGraw Hill Book Company, New York, 1910.
    [5] W. Philbrook and M. B. Bever, Basic open hearth steelmaking, AIME, New York, 1951.
    [6] E. S.Clarence, Electric furnace steelmaking, Metallurgical Society of AIME, New York, 1962.
    [7] H. V. V. Lawrence, Elements of materials science and engineering, Addison-Wesley Co., 1985.
    [8] M. Avedensian and H. Baker, Magnesium and magnesium alloys, ASM International, Materials Park, Ohio, 1999
    [9] G. Welsch, R. Boyer and E. W. Collings, Materials properties handbook: titanium alloy, ASM International, Materials Park, Ohio, 1994.
    [10] OECD, The steel market in 1994 and the outlook for 1995 and 1996, OECD Publication, Paris, 1995.
    [11] OECD, Recent steel market developments, OECD Publication, Paris, 2004.
    [12] R. Boyer, G. Welsch, E. W. Collings, Materials properties handbook: titanium alloys, ASM International, Materials Park, OH, 1994.
    [13] B. J. Hogan, “Steel still rules automobile manufacturing”, Manufacturing Engineering, 120, pp. 42-49, 1998.
    [14] D. J. Antos and E.G. Nisbett: Steel Forgings: Second Volume (ed. by E. G. Nisbett and A. S. Melilli), Second Symposium on Steel Forgings (ASTM Committee A-1, 1997), pp. 129-146, 1997.
    [15] A. B. Lopes, E. F. Rauch and J. J. Gracio, “Textural vs structural plastic instabilities in sheet metal forming”, Acta Mater., 47, pp. 859-866, 1999.
    [16] Y. S. Jang, D. C. Ko and B. M. Kim, “Application of the finite element method to predict microstructure evolution in the hot forging of steel”, J. Mater. Process. Technol., 101, pp. 85-94, 2000.
    [17] S. He, A. V. Bael, S.Y. Li, P. V. Houtte, “Residual stress determination in cold drawn steel wire by FEM simulation and X-ray diffraction”, F. Mei and A. Sarban: Mater. Sci. Eng. A, 346, pp. 101-107, 2003.
    [18] S. L. Semiatin, G. D. Lahoti and S. I. Oh: “The occurrence of shear bands in metalworking”, Material Behavior Under High Stress and Ultrahigh Loading Rates (ed. by J. Mescall and V. Weiss), pp.119-159, 1983.
    [19] J. Harding: “Effect of temperature and strain rate on strength and ductility of four alloy steels”, Metals Tech., 4, pp. 6-16, 1977.
    [20] A. M. Rajendran, “Penetration of tungsten alloy rods into shallow-cavity steel targets”, Int. J. Imp. Engng., 21, pp. 451-460, 1998.
    [21] J. D. Campbell and W. G. Ferguson, “Temperature and strain-rate dependence of the shear strength of mild steel”, Phil. Mag., 21, pp. 63-82, 1970.
    [22] A. J. Holzer and R. H. Brown, “Mechanical behavior of metals in dynamic compression”, Trans. ASME J. Eng. Mat. Tech., 101, pp. 238-247, 1979.
    [23] J. R. Klepaczko, “Experimental technique for shear testing at high and very high strain rates”, Int. J. Imp. Engng., 15, pp.25-39, 1994.
    [24] S. J. Craig, D. R. Gaskell, P. Rockett and C. Ruiz, “ An experimental technique for measurging the temperature rise during impact testing”, J. Phys. IV, C8, pp. 41-46, 1994.
    [25] S. Nemat-Nasser and J. B. Isaacs, “ Direct measuremnent of isothermal flow stress of materials at elevated temperature and hogh strain rates with application to Ta and Ta-W alloys”, Acta Mater., 45, pp. 907-919, 1996.
    [26] T. Shirakashi, K. Maekawa and E. Usui: “Flow stress of carbon steel at high temperature and strain rate (Part 1)”, Bull. Japan Soc. of Prec. Engg., 17, pp. 161-166, 1983.
    [27] K. Maekawa, T. Shirakashi and E. Usui: “Flow stress of carbon steel at high temperature and strain rate (Part 2)” Bull. Japan Soc. of Prec. Engg., 17, pp. 161-166, 1983.
    [28] K. Ogawa, “Mechanical behavior of metals under tension-compression loading at high strain rate”, Int. J. Plas., 1, pp. 347-358, 1985.
    [29] J. S. Rinehart: “Historical Perspective: Metallurgical Effects of High Strain-Rate Deformation and Fabrication”, Shock Waves and High-Strain-Rate Phenomena in Metals (ed. by M. A. Meyers and L. E. Murr), pp. 3-20, 1981.
    [30] M. R. Staker: “Introduction of high strain rate testing”, Metals Handbook, Vol. 8 Mechanical testing (ed. by J. R. Newby et. al.), 1985.
    [31] B. Hopkinson, “A Method of Measuring the Pressure Produced in Detonation of Explosive or by the Impact of Bullets”, Phil. Trans. A, 213, p 437, 1914.
    [32] R. M. Davies: “A Critical Study of the Hopkinson Pressure Bar”, Phil. Trans. A, 240, pp. 375-457, 1948.
    [33] H. Kolsky, Stress Waves in Solids, Dove Publications Inc., New York, 1963.
    [34] H. Kolsky: “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading”, Proc. Royal Soc. B, 62, p 676, 1949.
    [35] F. E. Hauser, J. A. Simmons and J. E. Dorn, “Strain Rate Effects in Plastic Wave Propagation”, Response of Metal to High Velocity Deformation, 9, pp. 63-, 1961.
    [36] P. S. Follansbee: “The Hopkinson bar”, Metals Handbook, Vol. 8 Mechanical testing (ed. by J. R. Newby et. al.), 1985.
    [37] J. Harding, E. D. Wood and J. D. Campbell, “Tensile Testing of Material at Impact Rates of Strain”, J. Mech. Eng. Sci., 2, pp.88-96, 1960.
    [38] U. S. Lindholm and L. M. Yeakley, “High Strain Rate Testing: Tension and Compression”, Exp. Mech., 8, pp. 1-9, 1968.
    [39] T. Nicholas, “Tensile Testing of Materials at High Rates of Strain”, Exp. Mech., 21, pp. 177-185, 1980.
    [40] M. A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, N. Y., 1994.
    [41] W. E. Baker and C. H. Yew, “Strain-Rate effects in the Propagation of Torsional Plastic Waves”, J. Appl. Mech., 33, pp.917-923, 1966.
    [42] Y. L. Bai, Q. Xue, Y. B. Xu and L. T. Shen, “Characteristics and Microstructure in Evolution of Shear Location in Ti6Al4V Alloy”, Mech. Mater., 17, pp.155-164, 1994.
    [43] Y. B. Xu, Y. L. Bai, Q. Xue and L. T. Shen “Formation Microstructure and Development of the Localized Shear Deformation in Low Carbon Steels”, Acta Mater., 44, pp.1917-1926, 1996.
    [44] Y. L. Bai and B. Dodd: Adiabatic Shear Localization Occurrence, Theories and Applications, Pergamon Press, N. Y., 1992.
    [45] K. F. Graff, Wave Motion in Elastic Solids, Ohio State University Press, O. H., 1975.
    [46] J. W. Dally, and W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, 1991.
    [47] K. Oi, “Transient Response of Bonded Strain Gages”, Exp. Mech., 6, pp. 463-469, 1966.
    [48] L. W. Bickle, “The Response of Strain Gages to Longitudinally Sweeping Strain Pulses,” Exp. Mech., 10, pp. 333-337, 1970.
    [49] H. Tresca, “Further aplications of the flow of solids” Proc. Inst. Mech. Engrs., 30, pp. 301-345, 1878.
    [50] G. I. Taylor and H. Quinney, “The latent energy remaining in a metal after cold working”, Proc. Royal Soc., 143, pp.307-326, 1934.
    [51] E. M. Trent, “The formation and properties of martensite on the surface of rope wire”, J. Iron Steel Inst., 140, pp. 401-419, 1941.
    [52] C. Zener and J. H. Hollomon, “Effect of Strain Rate upon Plastic Flow of Steel”, J. Appl. Phys., 15, pp. 22-32, 1944.
    [53] A. L. Wingrove, “Note on the structure of adiabatic shear bands in steel”, J Aust. Inst. Metals, 16, pp. 67-70, 1971.
    [54] M. E. Backman and S. A. Finnegan, “The propagation of adiabatic shear”, in Metallurgical Effects at High Strain Rates (ed. by R. W. Rohde, B. M. Butcher, R. J. Holland and C. H. Karnes), Plenum Press, New York, pp. 531-543, 1973.
    [55] M. Stelly, J. Legrand and R. Dormeval, “Some metallurgical aspects of the dynamic expansion of shells”, in Shock Waves and High-Strain-Rate Phenomena in Metals (ed. by M. A. Meyers and L. E. Murr), pp. 113-125, 1981.
    [56] J. E. Field and I. M. Hutchings, in “Mechanical Properties of Materials at High Rates of Strain” (ed. by J. Harding), pp. 349-371, 1984.
    [57] S. L. Semiatin, G. D. Lahoti and S. I. Oh, “The occurance of shear bands in metalworking”, in Material Behavior Under High Stress and Ultrahigh Loading Rates (ed. by J. Mescall and V. Weiss), pp. 119-159, 1982.
    [58] D. A. Shockey, “Materials aspects of the adiabatic shear phenomenon”, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena (ed. By L. E. Murr, K. P. Staudhammer and M. A. Meyers), pp. 633-656, 1986.
    [59] S. L. Semiatin and G. D. Lahoti, “Occurrence of shear bands in isothermal hot forging”, Met. Trans A., 13, pp. 275-288, 1982.
    [60] S. L. Semiatin and G. D. Lahoti, “Occurrence of shear bands in nonisothermal hot forging of Ti-6Al-2Sn-4Zr-2Mo-0.1Si”, Met. Trans. A, 14, pp. 105-115, 1983.
    [61] Y. Bai and B. Dood, Adiabatic Shear Localization, Pergamon Press, Oxford, U. K., p. 129, 1992
    [62] D. T. Chung, S. K.Moon and Y. H. Yoo, “Numerical and experimental study of the formation of adiabatic shear band”, J. Phys. IV, 4, pp. 547-552, 1994.
    [63] B. Dodd and Y. Bai, “Width of adiabatic shear bands formed under combined stresses”, Mater. Sci. Tech., 5, pp. 557-559, 1989.
    [64] A. K. Bhambri, “Influence of material characteristics on adiabatic shear and chip formation”, Microstructural Science, 7, pp. 255-264, 1979.
    [65] S. P. Timothy and I. M. Hutchings, “Structure of adiabatic shear bands in a titanium alloy”, Acta Metall., 33, pp. 667-676, 1985.
    [66] L. W. Meyer and S. Manwaring, “Critical adiabatic shear strength of low alloyed steel under compressive loading”, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena (ed. By L. E. Murr, K. P. Staudhammer and M. A. Meyers), Marcel Dekker Inc., New York, pp. 657-674, 1986.
    [67] B. Dodd and Y. Bai, “ Width of adiabatic shear bands”, Mater. Sci. Tech., 1, pp. 38-40, 1985.
    [68] Y. J. Chen, M. A. Meyers and V. F. Nesterenko, “Spontaneous and forced shear localization in high-strain-rate deformation of tantalum”, Mater. Sci. Eng. A, 268, pp. 70-82, 1999.
    [69] A. L. Wingrove and G. L.Wulf, “Some aspects of target and projectile properties on penetration behaviour”, J. Aust. Inst. Metals, 14, pp. 167-172, 1973.
    [70] A. Marchand and J. Duffy, “Experimental study of the formation process of adiabatic shear bands in a structural steel”, J. Mech. Phys. Solids, 36, pp. 261-283, 1988.
    [71] R. Clos, U. Schreppel and P. Veit, “Experimental investigation of adiabatic shear band formation in steels”, J. Phys. IV, 10, pp. 257-262, 2000.
    [72] A. J. Bedford, A. L.Wingrove and K. R. L. Thompson, “Phenomenon of adiabatic shear deformation”, J. Aus. Inst. Met., 19, pp.61-73, 1974.
    [73] H. C. Giovanola, “Adiabatic shear banding under pure shear loading part II: fractographic and metallographic observations”, Mech. Mater., 7, pp. 73-87, 1988.
    [74] K. Cho, Y. C. Chi and J. Duffy, “Microscopic observations of adiabatic shear bands in three different steels”, Met. Trans. A, 21, pp. 1161-1175, 1990.
    [75] K. H. Hartmann, H. D. Kunze and L. W. Meyers, in “Shock Waves and High-Strain-Rate Phenomena in Metals” (ed. by M. A. Meyers and L. E. Murr), pp. 325-337, 1981.
    [76] U. Andrade, M. A. Meyers, K. S. Vecchio and A. H. Chokshi, “Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper”, Acta Metall. Mater., 42, pp. 3183-3195, 1994.
    [77] J. A. Hines and K. S. Vecchio, “Recrystallization kinetics within adiabatic shear bands”, Acta Mater., 45, pp. 635-649, 1997.
    [78] S. Nemat-Nasser, J. B. Isaacs and M. Liu, “Microstructure of high-strain, high-strain-rate deformed tantalum”, Acta Mater., 46, pp. 1307-1325, 1998.
    [79] M. A. Meyers, V. F. Nesterenko, J. C. LaSalvia and Q. Xue, “Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization”, Mater. Sci. Eng. A, 317, pp. 204-225, 2001.
    [80] D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, p. 951, 1970.
    [81] U. F. Knocks, A. S. Argon and M. F. Ashby, Thermodynamics and Kinetics of Slip, Pergamon Press, N. Y., pp.68-89, 1975.
    [82] H. Conrad, “Thermally activated deformation of metals”, J. Metal, pp. 582-588, 1964
    [83] M.A.Meyers, D.J. Benson, O. Vöhringer, B.K. Kad, Q. Xue, and H. H. Fu, “Constitutive description of dynamic deformation: physically-based mechanisms”, Mater. Sci Engng. A, 322, pp. 194-216, 2002.
    [84] H. E. Read, “A micro-dynamical approach to constitutive modeling of shock-induced deformation”, Metallurgical Effects at High Strain Rates (ed. by R.W. Rohde, B. M. Butcher, J. D. Holland and C. H. Karnes), Plenum Press, N. Y., pp. 335-347, 1973.
    [85] A. S. Argon, “Physical basis of constitutive equations for inelastic deformation”, Constitutive Equations in Plasticity (ed. by A. S. Argon), MIT Press, London, pp. 1-22, 1975.
    [86] L. W. Meyer, “Constitutive equations at high strain rate”, Shock and High-Strain-Rate Phenomena in Materials (ed. by M. A. Meyers, L. W. Murr and K. P. Staudhammer), Marcel Dekker Inc. N. Y., pp.49-68. 1992.
    [87] J. Harding, “The development of constitutive relationships for material behavior at high rates of strain”, Mechanical Properties of Materials at High Rates of Strain 1989 (ed. by J. Harding), IOP Publishing Ltd, N. Y., pp.189-212, 1989.
    [88] P. Ludwick, Elementte der Technologischen Mechanik, Springer Verlag, Berlin, p. 32, 1909.
    [89] R. W. Klopp, R. J. Clifton and T. G. Shawki, “Pressure shear impact and dynamic viscoplastic response of metals”, Mech. Mater., 4, pp.375-385, 1985.
    [90] G. R. Johnson and W. H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rate and high temperatures”, Proceeding of the 7th International Symposium on Ballistics, 1983.
    [91] T. J. Holmquist and G. R. Johnson, “ Determination of constants and comparison for various constitutive models”, J. Phys. IV, C3, pp. 853-860, 1991.
    [92] F. J. Zerilli and R. W. Armstrong, “Dislocation-mechanics-based constitutive relations for material dynamics calculations”, J. Appl. Phys., 61, pp.1816-1825, 1987.
    [93] R. W. Armstrong, “Relation between the Petch friction stress and the thermal activation rate equations”, Acta Metall., 15, pp.667-668, 1967.
    [94] G. R. Johnson and T. J. Holmquist, “Evaluation of cylinder-impact test data for constitutive model constants”, J. Appl. Phys., 64, pp.3901-3910, 1988.
    [95] F. J. Zerilli and R. W. Armstrong, “Constitutive equation for HCP metals and high strength alloy steels”, High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, 48, pp.121-126, 1995.
    [96] P. S. Follansbee and U. F. Kocks, “A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable”, Acta Metall., 36, pp. 81-93, 1988.
    [97] U. F. Knocks, A. S. Argon and M. F. Ashby, Thermodynamics and Kinetics of Slip, Pergamon Press, N. Y., pp.110-170, 1975.
    [98] U. F. Kocks, “Laws for work-hardening and low temperature creep”, Trans. ASME J. Engng. Mater. Tech., 98, pp. 76-85, 1976.
    [99] P. E. Armstrong P. S. Follansbee and T. Zocco, “A constitutive description of the deformation of alpha uranium based on the use of the mechanical threshold stress as a state variable”, Mechanical Properties of Materials at High Rates of Strain 1989 (ed. by J. Harding), IOP Publishing Ltd, N. Y., pp. 237-244, 1989.
    [100] Sir R. Honeycombe and H. K. D. H. Bhadeshia, Steels Microstructure and Properties 2nd edition, Edward Arnold, London, pp.30-59, 1995.
    [101] S. A. Hackney and G. J. Shiflet, “Interfacial structure at the pearlite: austenite growth interface in an Fe-0.8C-12mn steel”, Scripta Metall., 19, pp. 757-762, 1985.
    [102] S. A. Hackney and G. J. Shiflet, “Pearlite-austenite growth interface in an Fe-0. 8 C-12 mn alloy”, Acta Metall., 35, pp. 1007-1017, 1987.
    [103] S. A. Hackney and G. J. Shiflet, “ Pearlite growth mechanism”, Acta Metall., 35, pp. 1019-1028, 1987.
    [104] S. A. Hackney and G. J. Shiflet, “ Anisotropic interfacial energy at pearlite lamellar boundaries in a high purity Fe-0. 80% C alloy”, Scripta Metall., 20, pp. 389-394, 1986.
    [105] T. Gladman, I. D. McIvor and F. B. Pickering, “Some aspects of the structure-property relationshps in high-carbon ferrite-pearlite steels” J. Iron Steel Inst., 210, pp. 916-930, 1972.
    [106] W. S. Lee, C. Y. Liu and B. K. Wang, “The correction of wave dispersion of the split Hopkinson pressure bar using Discrete Fourier Transformation”, The 27TH conference on theoretical and applied mechanics, Tainan, Taiwan, R.O.C., 12-13 December 2003.
    [107] R. K. Ham, “The determination of dislocation densities in thin films”, Phil. Mag., 6, pp. 1183-1184, 1961.
    [108] M. Itabashi and K. Kawata, “Carbon content effect on high-strain-rate tensile properties for carbon steels”, Int. J. Imp. Engng., 24, pp. 117-131, 2000.
    [109] E. Lach, H. Nahme and I. Rohr, “Dynamic properties of nitrogen alloyed 1045 iron-carbon-steel”, J. Phys. IV France, 110, pp. 857-862, 2003.
    [110] Y. Lee, B. M. Kim, K. J. Park, S. W. Seo and O. Min, “ A study for the constitutive equation of carbon steel subjected to large strains, high temperatures and high strain rates”, J. Mater. Process. Technol., 130-131, pp. 181-188, 2002.
    [111] M. B. Bever, D. L. Holt and A. L. Titchener, “ The stored energy of cold work”, Progress in Materials Science (ed. by b. Chalmers et. al), 17, pp. 5-88, 1973.
    [112] J. J. Mason, A. J Rosakis. and G. Ravichandran, “On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared defectors and the Kolsky bar”, Mech. Mater., 17, pp. 135-145, 1994.
    [113] R. Kapoor and S. Nemat-Nasser, “Determination of temperature rise during high strain rate deformation”, Mech. Mater., 27, pp. 1-12, 1998.
    [114] S. Esmaeili, L.M.Cheng, A. Deschamps, D.J. Lloyd and W.J. Poole, “The deformation behaviour of AA6111 as a function of temperature and precipitation state”, Mater. Sci. Engng. A, 319-321, pp.416-425, 2001.
    [115] B. Viguier, “Dislocation densities and strain hardening rate in some intermetallic compounds”, Mater. Sci Engng. A, 349, pp.132-135, 2003.
    [116] D. Chu and J. W. Morris Jr, “The influence of microstructure on work hardening in aluminum”, Acta Mater., 44, pp. 2599-2610, 1995.
    [117] R. Song, D. Ponge and D. Raabe, “Improvement of the work hardening rate of ultrafine grained steels through second phase particles”, Scripta Mater., 52, pp. 1075-1080, 2005.
    [118] B. Dood and Y. Bai, Ductile Fracture and Ductility, Academic Press Inc., London, p. 136, 1987.
    [119] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgry Principles (3rd Ed.), PWS Publishing Company, Boston, USA, p. 868, 1994.
    [120] L. Shi and D. O. Northwood, “The mechanical behavior of an AISI type 310 stainless steel”, Acta Metall. Mater., 43, pp. 453-460, 1995.
    [121] Y. Aono, E. Kuramoto and K. Kitajima, “Plastic deformation of high-purity iron single crystals”, Rep. Res. Inst. Appl. Mech., 29, pp. 127-193, 1981.
    [122] P. Spätig, G. R. Odette and G. E. Lucas, “Low temperature yields properties of two 7-9Cr ferritic/martensitic steels”, J. Nuc. Mater., 275, pp.324-331, 1999.
    [123] E. El-Magd, “Mechanical properties at high strain rates”, J. Phys. IV France, C8, pp. 149-170, 1994.
    [124] M. A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, N. Y., pp. 374-378, 1994.
    [125] F. J. Humphreys and M Hatherly, Recrystallization and related annealing phenomena, Pergamon, Oxford, pp. 128-171, 1995.
    [126] H. Hu, “An electron-transmission study of rolled and annealed Silicon-Iron crystals with (111) [ ] orientation”, Trans. Met. Soc. A. I. M. E., 230, pp. 572-580, 1964.
    [127] P. L. Hereil, “On the strain rate dependence of yielding stresses of copper at high strain rates”, in Impact Loading and Dynamic Behavior of Materials (ed. by C. Y. Chiem et. al.), pp. 385-392, 1988.
    [128] K. M. Cho, S. Lee, S. R. Nutt and J. Duffy, “Adiabatic shear band formation during dynamic torsional deformation of an HY-100 steel”, Acta Metall. Mater., 41, pp. 923-932, 1993.
    [129] T. Børvik, M. Langseth, O. S. Hopperstad and K. A. Malo, “Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses Part I: Experimental study”, Int. J. Imp. Eng., 27, pp. 19-35, 2002.
    [130] B. Dodd and Y. Bai, Ductile Fracture and Ductility, Academic Press Inc., London, pp. 123-146, 1987.
    [131] Y. B. Xu, W. L. Zhong, Y. J. Chen, L. T. Shen, Q. Liu Y. L. Bai and M. A. Meyers, Shear localization and Recrystallization in dynamic deformation of 8090Al-Li alloy, Mater. Sci. Eng. A, 299, pp. 287-295, 2001.
    [132] E. S. Dzidowski and W. Cisek, “New development of shear fracture research”, J. Mater. Proc. Tech., 106, pp. 267-272, 2000.
    [133] C. Lamouroux, P. Debat, J. Inglès, N. Guerrero, P. Sirieys, J. C. Soula, Rheological properties of rock inferred from the geometry and microstructures in two natural shear zones, Mech. Mater., 18, pp.79-87, 1994.

    下載圖示 校內:2007-07-05公開
    校外:2008-07-05公開
    QR CODE