簡易檢索 / 詳目顯示

研究生: 汪含穎
Wang, Han-Ying
論文名稱: IL-18誘發血癌細胞中IMP3和HuR交互作用,並透過後轉錄調控調控COX-2表現
IL-18-induced interaction of IMP3 and HuR contributes to COX-2 expression through a post-transcriptional regulation in leukemia
指導教授: 王育民
Wang, Ju-Ming
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 52
中文關鍵詞: 介白素-18環氧化酶-2HuRIMP3白血病
外文關鍵詞: IL-18, COX-2, HuR, IMP3, leukemia
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白血病是血液型惡性腫瘤的統稱,其中急性白血病好發於成年人且最致命的一種白血病亞型。目前針對急性白血病上有許多不同的治療方式,誘導分化治療法即是一種透過迫使癌細胞走向分化,進而引發癌細胞死亡的治療法。但發現病患會因產生抗藥性而導致療程的失敗。介白素-18是一種促發炎的細胞激素。介白素-18已被發現會大量表現在一些血液型惡性腫瘤中,並且導致較差的癒後。介白素-18雖然已在固態腫瘤中被認為扮演促進腫瘤生成的角色,但是對於介白素-18在血液型惡性腫瘤中的影響及調控機制尚不清楚。在本研究中我們發現介白素-18雖不會對急性白血病細胞株 U937與THP-1細胞的增生造成影響,但具有抑制其細胞凋亡的能力;也發現在U937細胞中,特別是刺激分化後的U937細胞,介白素-18會透過後轉錄調控的機制來增加環氧化酶-2 的表現。兩個RNA結合蛋白 HuR和IMP3 參與在穩定環氧化酶-2 mRNA中,另外也發現介白素-18並不影響 HuR和IMP3 的表現量,但會增加他們從細胞核到細胞質的移動並增加HuR和IMP3結合至環氧化酶-2 mRNA上。於此,我發現介白素-18會活化JNK和ERK1/2路徑,而增加HuR轉移(但不影響IMP-3)到細胞質以及環氧化酶-2 3端UTR報導子的轉錄活性。這些結果顯示介白素-18穩定環氧化酶-2 mRNA的機制可能是透過JNK和/或ERK1/2路徑所調控的HuR出核轉送。因此這研究結果指出介白素-18和環氧化酶-2的抑制劑,可能可以做為一個以誘導分化治療的白血病的合併藥劑。

    Leukemia is a broad term covering a spectrum of diseases. The acute myeloid leukemia (AML) is a common subtype occurred in adults and also the majority type of all leukemia patients to result in death. Instead of killing cancer cells through cytotoxicity, forcing malignant cells to undergo differentiation is one of the strategies in AML therapy. However, the patients always failed to complete remission due to drug resistance is still a challenge. IL-18 is a pro-inflammatory cytokine. IL-18 was observed to be overexpressed in some hematologic malignancies and associated with a poor clinical outcome. Importantly, although the protumor effect of IL-18 was suggested in solid tumors, the effects and details remain less to be elucidated in hematopoietic neoplasms. In this study, we found that IL-18 has no effect on the proliferation but showed an antiapoptotic effect on U937 and THP-1 cells. Increase of COX-2 expression is responsive to IL-18 treatment through a post-transcriptional regulation in U937 cells, especially in differentiated U937 cells. Two RNA binding proteins HuR and IMP-3 mediate the stabilization of COX-2 mRNA. IL-18 has no effect on the levels of HuR and IMP-3 but induced their shuttle from nucleus to cytoplasm and interaction. Importantly, IL-18 induces the bindings of HuR and IMP-3 on the 3’UTR of COX-2 mRNA. JNK and ERK1/2 signaling pathways contribute to IL-18-enhanced COX-2 transcripts and the shuttle of HuR, but not IMP-3, from nucleus to cytoplasm in differentiated U937 cells. These results suggested that IL-18 can stabilize COX-2 mRNA through the JNK- and/or ERK1/2-regulated HuR nucleocytoplasmic shuttle. It also implied that the IL-18 and COX-2 inhibitors could represent a potential adjuvant to be combined with differentiation therapy for AML therapy.

    ABSTRACT III ABSTRACT IN CHINESE IV 致謝 V CONTENTS VI FIGURE CONTENTS VIII APPENDIX X CHAPTER 1 INTRODUCTION 1 1. 1 BLOOD CANCER-LEUKEMIA 1 1-1. 1 ACUTE MYELOID LEUKEMIA (AML) 1 1-1. 2 THERAPIES IN AML 2 1-1. 3 COX-2 IN AML 2 1-1. 4 INTERLEUKEIN-18 (IL-18) 3 1-2. RNA–BINDING PROTEINS 4 1-2. 1 HU FAMILY OF RNA-BINDING PROTEIN –HUR AND AU-RICH ELEMENTS (ARES) 5 1-2. 2 IMP FAMILY OF RNA- BINDING PROTEIN 7 1-2. 3 IMP-3 BIOLOGY 7 CHAPTER 2 MATERIALS AND METHODS 9 2-1. MATERIALS 9 2-2. METHODS 9 CELL CULTURE AND DIFFERENTIATION 9 REVERSE TANSCRIPTION PLYMERASE CAIN RACTION (RT-PCR) 10 REPORTERS AND TRANSFECTION 10 ASSAYS OF CELL PROLIFERATION AND APOPTOSIS 11 RNA-IMMUNOPRECIPITATION (RNA-IP) ASSAY 11 IMMUNOPRECIPITATION (IP) ASSAY 12 IMMUNOFLUORESCENCE (IF) ASSAY 12 RNA-INTERFERENCE ASSAY 12 MRNA HALF-LIFE ASSAY 13 PREPARATION OF NUCLEAR AND CYTOSOLIC FRACTIONATION 13 BLOCKADE OF MAPK PATHWAYS 14 CHAPTER 3 RESULTS 15 IL-18 MEDIATES ANTI-APOPTOSIS OF U937 AND THP-1 CELLS 15 VITAMIN D3 AND PMA INDUCED U937 DIFFERENTIATION BOT ALSO INCREASED COX-2 EXPRESSION AND IL-18 ENHANCES COX-2 EXPRESSION LEVEL 15 IL-18 INCREASES COX-2 EXPRESSION LEVEL THROUGH STABILIZING COX-2 MRNA 3’UTR 16 TWO RNA BINDING PROTEINS HUR AND IMP-3 CONTRIBUTE TO THE POST-TRANSCRIPTIONAL REGULATION OF COX-2 GENE IN AML CELLS 16 IL-18 STIMULUS HUR-IMP-3 COMPLEX INCREASE INTERACTING WITH COX-2 MRNA 17 JNK AND ERK, ATTENUATES IL-18-INDUCED NUCLEUS-CYTOSOLIC SHUTTLE OF HUR, BUT NOT IMP-3 17 CHAPTER 4 DISCUSSION 19 REFERENCES 23 FIGURES 32 APPENDIXES 48 CURRICULUM VITAE 53

    1. Janssen, J.W., et al., Oncogene activation in human myeloid leukemia. Cancer Res, 1985. 45(7): p. 3262-7.
    2. Shannon, K.M., et al., Modeling myeloid leukemia tumor suppressor gene inactivation in the mouse. Semin Cancer Biol, 2001. 11(3): p. 191-200.
    3. Pompetti, F., et al., Long-term remission in BCR/ABL-positive AML-M6 patient treated with Imatinib Mesylate. Leuk Res, 2007. 31(4): p. 563-7.
    4. Kiyoi, H., et al., Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia, 1997. 11(9): p. 1447-52.
    5. Kiyoi, H., et al., Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood, 1999. 93(9): p. 3074-80.
    6. Stirewalt, D.L., et al., FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood, 2001. 97(11): p. 3589-95.
    7. Meshinchi, S., et al., Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood, 2001. 97(1): p. 89-94.
    8. Stirewalt, D.L. and J.P. Radich, The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer, 2003. 3(9): p. 650-65.
    9. Iwai, T., et al., Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia, 1999. 13(1): p. 38-43.
    10. Kondo, M., et al., Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol, 1999. 33(6): p. 525-9.
    11. Rombouts, W.J., et al., Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia, 2000. 14(4): p. 675-83.
    12. Farr, C.J., et al., Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc Natl Acad Sci U S A, 1988. 85(5): p. 1629-33.
    13. Janssen, J.W., et al., RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc Natl Acad Sci U S A, 1987. 84(24): p. 9228-32.
    14. Paquette, R.L., et al., N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood, 1993. 82(2): p. 590-9.
    15. Miyauchi, J., et al., Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood, 1994. 83(8): p. 2248-54.
    16. Towatari, M., et al., Constitutive activation of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia, 1997. 11(4): p. 479-84.
    17. Shen, Z.X., et al., Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood, 1997. 89(9): p. 3354-60.
    18. Fenaux, P., et al., A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood, 1999. 94(4): p. 1192-200.
    19. Koeffler, H.P., K. Hirji, and L. Itri, 1,25-Dihydroxyvitamin D3: in vivo and in vitro effects on human preleukemic and leukemic cells. Cancer Treat Rep, 1985. 69(12): p. 1399-407.
    20. Nowak, D., D. Stewart, and H.P. Koeffler, Differentiation therapy of leukemia: 3 decades of development. Blood, 2009. 113(16): p. 3655-65.
    21. Humeniuk-Polaczek, R. and E. Marcinkowska, Impaired nuclear localization of vitamin D receptor in leukemia cells resistant to calcitriol-induced differentiation. J Steroid Biochem Mol Biol, 2004. 88(4-5): p. 361-6.
    22. Jin, L., et al., Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell, 2009. 5(1): p. 31-42.
    23. Imaizumi, M., et al., Mutations in the E-domain of RAR portion of the PML/RAR chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood, 1998. 92(2): p. 374-82.
    24. Delva, L., et al., Resistance to all-trans retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia: study of in vitro ATRA sensitivity and cellular retinoic acid binding protein levels in leukemic cells. Blood, 1993. 82(7): p. 2175-81.
    25. Ding, W., et al., Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARalpha fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood, 1998. 92(4): p. 1172-83.
    26. Cetin, M., et al., Overexpression of cyclooxygenase-2 in multiple myeloma: association with reduced survival. Am J Hematol, 2005. 80(3): p. 169-73.
    27. Nakanishi, Y., et al., Inhibitors of cyclooxygenase-2 (COX-2) suppressed the proliferation and differentiation of human leukaemia cell lines. Eur J Cancer, 2001. 37(12): p. 1570-8.
    28. Angst, E., et al., Mononuclear cell-derived interleukin-1 beta confers chemoresistance in pancreatic cancer cells by upregulation of cyclooxygenase-2. Surgery, 2008. 144(1): p. 57-65.
    29. Hosoi, T., K. Takeda, and K. Konno, Synergism of prostaglandin E2 plus TNF in induction of differentiation of human monocytoid leukemic U-937 cells. Anticancer Res, 1989. 9(3): p. 615-8.
    30. Sun, Y., et al., Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res, 2002. 62(21): p. 6323-8.
    31. Hida, T., et al., Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res, 1998. 58(17): p. 3761-4.
    32. Chien, M.H., et al., Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway. Carcinogenesis, 2009. 30(12): p. 2005-13.
    33. Gracie, J.A., S.E. Robertson, and I.B. McInnes, Interleukin-18. J Leukoc Biol, 2003. 73(2): p. 213-24.
    34. Tone, M., et al., Regulation of IL-18 (IFN-gamma-inducing factor) gene expression. J Immunol, 1997. 159(12): p. 6156-63.
    35. Kim, Y.M., et al., Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression. J Immunol, 1999. 163(4): p. 2000-7.
    36. Stoll, S., et al., Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Th1 development. Eur J Immunol, 1998. 28(10): p. 3231-9.
    37. Kanai, T., et al., Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn's disease. Gastroenterology, 2001. 121(4): p. 875-88.
    38. Ghayur, T., et al., Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature, 1997. 386(6625): p. 619-23.
    39. Gu, Y., et al., Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science, 1997. 275(5297): p. 206-9.
    40. Torigoe, K., et al., Purification and characterization of the human interleukin-18 receptor. J Biol Chem, 1997. 272(41): p. 25737-42.
    41. Hoshino, K., et al., Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J Immunol, 1999. 162(9): p. 5041-4.
    42. Leung, B.P., et al., A role for IL-18 in neutrophil activation. J Immunol, 2001. 167(5): p. 2879-86.
    43. Hyodo, Y., et al., IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J Immunol, 1999. 162(3): p. 1662-8.
    44. Kalina, U., et al., IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol, 2000. 165(3): p. 1307-13.
    45. Shimoda, K., et al., Partial impairment of interleukin-12 (IL-12) and IL-18 signaling in Tyk2-deficient mice. Blood, 2002. 99(6): p. 2094-9.
    46. Kim, J., et al., IL-18 enhances thrombospondin-1 production in human gastric cancer via JNK pathway. Biochem Biophys Res Commun, 2006. 344(4): p. 1284-9.
    47. Kawabata, T., et al., Preoperative serum interleukin-18 level as a postoperative prognostic marker in patients with gastric carcinoma. Cancer, 2001. 92(8): p. 2050-5.
    48. Vidal-Vanaclocha, F., et al., Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev, 2006. 25(3): p. 417-34.
    49. Alexandrakis, M.G., et al., Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leuk Res, 2004. 28(3): p. 259-66.
    50. Zhang, B., et al., Expression of IL-18 and its receptor in human leukemia cells. Leuk Res, 2003. 27(9): p. 813-22.
    51. Zhang, B., et al., Clinical significance of IL-18 gene over-expression in AML. Leuk Res, 2002. 26(10): p. 887-92.
    52. Zhang, B., et al., IL-18 increases invasiveness of HL-60 myeloid leukemia cells: up-regulation of matrix metalloproteinases-9 (MMP-9) expression. Leuk Res, 2004. 28(1): p. 91-5.
    53. Bellone, G., et al., Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother, 2006. 55(6): p. 684-98.
    54. Le Page, C., et al., From gene profiling to diagnostic markers: IL-18 and FGF-2 complement CA125 as serum-based markers in epithelial ovarian cancer. Int J Cancer, 2006. 118(7): p. 1750-8.
    55. Gunel, N., et al., Prognostic value of serum IL-18 and nitric oxide activity in breast cancer patients at operable stage. Am J Clin Oncol, 2003. 26(4): p. 416-21.
    56. Moore, M.J., From birth to death: the complex lives of eukaryotic mRNAs. Science, 2005. 309(5740): p. 1514-8.
    57. Keene, J.D., RNA regulons: coordination of post-transcriptional events. Nat Rev Genet, 2007. 8(7): p. 533-43.
    58. Abdelmohsen, K. and M. Gorospe, Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA. 1(2): p. 214-29.
    59. Glisovic, T., et al., RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett, 2008. 582(14): p. 1977-86.
    60. Chen, Y. and G. Varani, Protein families and RNA recognition. FEBS J, 2005. 272(9): p. 2088-97.
    61. Draper, D.E., Protein-RNA recognition. Annu Rev Biochem, 1995. 64: p. 593-620.
    62. Guhaniyogi, J. and G. Brewer, Regulation of mRNA stability in mammalian cells. Gene, 2001. 265(1-2): p. 11-23.
    63. Audic, Y. and R.S. Hartley, Post-transcriptional regulation in cancer. Biol Cell, 2004. 96(7): p. 479-98.
    64. Izquierdo, J.M., Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis-promoting receptor on exon definition. J Biol Chem, 2008. 283(27): p. 19077-84.
    65. Hinman, M.N. and H. Lou, Diverse molecular functions of Hu proteins. Cell Mol Life Sci, 2008. 65(20): p. 3168-81.
    66. Fan, X.C. and J.A. Steitz, HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15293-8.
    67. Doller, A., et al., Protein kinase C alpha-dependent phosphorylation of the mRNA-stabilizing factor HuR: implications for posttranscriptional regulation of cyclooxygenase-2. Mol Biol Cell, 2007. 18(6): p. 2137-48.
    68. Lafarga, V., et al., p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint. Mol Cell Biol, 2009. 29(16): p. 4341-51.
    69. Doller, A., J. Pfeilschifter, and W. Eberhardt, Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal, 2008. 20(12): p. 2165-73.
    70. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66.
    71. Ohtani, N., D.J. Mann, and E. Hara, Cellular senescence: its role in tumor suppression and aging. Cancer Sci, 2009. 100(5): p. 792-7.
    72. Yang, J., et al., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997. 275(5303): p. 1129-32.
    73. Michels, J., P.W. Johnson, and G. Packham, Mcl-1. Int J Biochem Cell Biol, 2005. 37(2): p. 267-71.
    74. Ishimaru, D., et al., Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol Cancer Res, 2009. 7(8): p. 1354-66.
    75. Dixon, D.A., et al., Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest, 2001. 108(11): p. 1657-65.
    76. Nielsen, J., et al., A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol, 1999. 19(2): p. 1262-70.
    77. Nielsen, F.C., et al., Cytoplasmic trafficking of IGF-II mRNA-binding protein by conserved KH domains. J Cell Sci, 2002. 115(Pt 10): p. 2087-97.
    78. Nielsen, F.C., J. Nielsen, and J. Christiansen, A family of IGF-II mRNA binding proteins (IMP) involved in RNA trafficking. Scand J Clin Lab Invest Suppl, 2001. 234: p. 93-9.
    79. Mueller-Pillasch, F., et al., Cloning of a gene highly overexpressed in cancer coding for a novel KH-domain containing protein. Oncogene, 1997. 14(22): p. 2729-33.
    80. Mueller-Pillasch, F., et al., Expression of the highly conserved RNA binding protein KOC in embryogenesis. Mech Dev, 1999. 88(1): p. 95-9.
    81. Liao, B., et al., The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol Chem, 2005. 280(18): p. 18517-24.
    82. Lin, C.Y., et al., Insulin-like growth factor II mRNA-binding protein 3 expression promotes tumor formation and invasion and predicts poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med. 40(9): p. 699-705.
    83. Vikesaa, J., et al., RNA-binding IMPs promote cell adhesion and invadopodia formation. EMBO J, 2006. 25(7): p. 1456-68.
    84. Suvasini, R., et al., Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J Biol Chem. 286(29): p. 25882-90.
    85. Schaeffer, D.F., et al., Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival. BMC Cancer. 10: p. 59.
    86. Liao, B., Y. Hu, and G. Brewer, RNA-binding protein insulin-like growth factor mRNA-binding protein 3 (IMP-3) promotes cell survival via insulin-like growth factor II signaling after ionizing radiation. J Biol Chem. 286(36): p. 31145-52.
    87. Wang, T., et al., L523S, an RNA-binding protein as a potential therapeutic target for lung cancer. Br J Cancer, 2003. 88(6): p. 887-94.
    88. Wagner, M., et al., Transgenic overexpression of the oncofetal RNA binding protein KOC leads to remodeling of the exocrine pancreas. Gastroenterology, 2003. 124(7): p. 1901-14.
    89. Vainer, G., et al., A role for VICKZ proteins in the progression of colorectal carcinomas: regulating lamellipodia formation. J Pathol, 2008. 215(4): p. 445-56.
    90. Boyd, A.W. and J.R. Sullivan, Leukemic cell differentiation in vivo and in vitro: arrest of proliferation parallels the differentiation induced by the antileukemic drug Harringtonine. Blood, 1984. 63(2): p. 384-92.
    91. Zhang, L., et al., Induction by bufalin of differentiation of human leukemia cells HL60, U937, and ML1 toward macrophage/monocyte-like cells and its potent synergistic effect on the differentiation of human leukemia cells in combination with other inducers. Cancer Res, 1992. 52(17): p. 4634-41.
    92. Petrie, K., A. Zelent, and S. Waxman, Differentiation therapy of acute myeloid leukemia: past, present and future. Curr Opin Hematol, 2009. 16(2): p. 84-91.
    93. Puren, A.J., G. Fantuzzi, and C.A. Dinarello, Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2256-61.
    94. Patel, U.D., et al., Preoperative serum brain natriuretic peptide and risk of acute kidney injury after cardiac surgery. Circulation. 125(11): p. 1347-55.
    95. Soslow, R.A., et al., COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer, 2000. 89(12): p. 2637-45.
    96. Cheng, J., et al., Recombinant HBsAg inhibits LPS-induced COX-2 expression and IL-18 production by interfering with the NFkappaB pathway in a human monocytic cell line, THP-1. J Hepatol, 2005. 43(3): p. 465-71.
    97. Gaffney, D.K., et al., Elevated COX-2 expression in cervical carcinoma: reduced cause-specific survival and pelvic control. Am J Clin Oncol, 2001. 24(5): p. 443-6.
    98. Ferrandina, G., et al., Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients. Ann Oncol, 2002. 13(8): p. 1205-11.
    99. Peng, H.L., et al., Dup-697, a specific COX-2 inhibitor, suppresses growth and induces apoptosis on K562 leukemia cells by cell-cycle arrest and caspase-8 activation. Ann Hematol, 2008. 87(2): p. 121-9.
    100. Liu, X.H., et al., NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res, 1998. 58(19): p. 4245-9.
    101. Lee, J.K., et al., Differences in signaling pathways by IL-1beta and IL-18. Proc Natl Acad Sci U S A, 2004. 101(23): p. 8815-20.
    102. Sengupta, S., et al., The RNA-binding protein HuR regulates the expression of cyclooxygenase-2. J Biol Chem, 2003. 278(27): p. 25227-33.
    103. Denkert, C., et al., Expression of the ELAV-like protein HuR is associated with higher tumor grade and increased cyclooxygenase-2 expression in human breast carcinoma. Clin Cancer Res, 2004. 10(16): p. 5580-6.
    104. Tiedje, C., et al., The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet. 8(9): p. e1002977.
    105. Liao, W.L., et al., The RNA-binding protein HuR stabilizes cytosolic phospholipase A2alpha mRNA under interleukin-1beta treatment in non-small cell lung cancer A549 Cells. J Biol Chem. 286(41): p. 35499-508.
    106. Fan, X.C. and J.A. Steitz, Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J, 1998. 17(12): p. 3448-60.
    107. Peng, S.S., et al., RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J, 1998. 17(12): p. 3461-70.
    108. Winzen, R., et al., Distinct domains of AU-rich elements exert different functions in mRNA destabilization and stabilization by p38 mitogen-activated protein kinase or HuR. Mol Cell Biol, 2004. 24(11): p. 4835-47.
    109. Lin, W.N., et al., Regulation of cyclooxygenase-2 and cytosolic phospholipase A2 gene expression by lipopolysaccharide through the RNA-binding protein HuR: involvement of NADPH oxidase, reactive oxygen species and mitogen-activated protein kinases. Br J Pharmacol. 163(8): p. 1691-706.
    110. He, Q., et al., HMGB1 promotes the synthesis of pro-IL-1beta and pro-IL-18 by activation of p38 MAPK and NF-kappaB through receptors for advanced glycation end-products in macrophages. Asian Pac J Cancer Prev. 13(4): p. 1365-70.
    111. Yu, X.H., et al., Interleukin-18 and interleukin-12 together downregulate ATP-binding cassette transporter A1 expression through the interleukin-18R/nuclear factor-kappaB signaling pathway in THP-1 macrophage-derived foam cells. Circ J. 76(7): p. 1780-91.
    112. Yoo, J.K., et al., IL-18 induces monocyte chemotactic protein-1 production in macrophages through the phosphatidylinositol 3-kinase/Akt and MEK/ERK1/2 pathways. J Immunol, 2005. 175(12): p. 8280-6.
    113. Rana, S.N., et al., Inhibition of IL-18 reduces myeloperoxidase activity and prevents edema in intestine following alcohol and burn injury. J Leukoc Biol, 2005. 77(5): p. 719-28.
    114. Chandramohan Reddy, T., et al., Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-kappaB inactivation. Toxicol In Vitro. 26(3): p. 396-405.
    115. Zhang, G.S., et al., Antitumor effects of celecoxib on K562 leukemia cells are mediated by cell-cycle arrest, caspase-3 activation, and downregulation of Cox-2 expression and are synergistic with hydroxyurea or imatinib. Am J Hematol, 2006. 81(4): p. 242-55.

    下載圖示 校內:2018-08-16公開
    校外:2018-08-16公開
    QR CODE