| 研究生: |
王慶霖 Wang, Kin-Lin |
|---|---|
| 論文名稱: |
微型立體線圈及其在磁珠操縱之應用 Micro 3-D Coils and Their Applications on Manipulation of Magnetic Beads |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 微型線圈 、SU-8 、磁珠 、磁性合金 、微機電系統 |
| 外文關鍵詞: | SU-8, MEMS, Magnetic bead, Micro coils, Permalloy |
| 相關次數: | 點閱:112 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電系統(Micro-Electro-Mechanical-System, MEMS)技術可提供各式各樣的微型工具,本研究利用MEMS技術成功地設計簡化製作3D立體微型電磁鐵,藉著控制磁珠移動來模擬操縱奈米尺度下的單一生物分子,可作為將來用來觀察測量生物分子之物理機械性質的工具。
微型圈線之製作,大致可分為二種,平面式及立體式,本研究採用簡單的方式來當作3D立體線圈的製程方法,其最大的優點在於無接孔(via)設計,可減少光罩數目、減少對位的失敗的可能性以及降低製程的複雜度。本研究採用下層線圈對上層線圈電鍍的方式組合而成,可建構出一個完整的立體線圈。此外本研究地設計了二款3D立體線圈,包含環狀式與陣列式,藉著排列方式的不同,提供一個更彈性的方式,來進行磁珠的量測與分析。在環狀式的立體線圈作操控磁珠的試驗,分別輪流開啟電流產生磁力,致使磁珠因此而造成吸引,逐漸轉移促成有操控的效果;緊接著開啟所有的線圈上的電流由小到大,使每個線圈都產生磁力來作為磁珠因受磁力的吸引達到聚積的效果。其次利用在陣列式的立體線圈上,取磁珠經由微流管道輸送,通過兩邊之立體電磁鐵之際,輸入電流產生磁力將磁珠截止住, 再輸入不同的電流產生不同的磁力大小來觀察磁珠被吸附的多寡,達到應用的效果。
此3-D微型立體磁箝藉由磁力吸引磁珠的關係,除了可提供在單一DNA分子之操縱外,仍有其他生物應用之潛能,可以將此操縱平台應用在不同之有機線材的研究,例如蛋白質或細胞之研究,透過磁珠鍵結細胞與施加磁場,來觀察細胞。應用此3-D微型立體電磁鐵操縱平台於生命科學與奈米科技領域。
This study reports a simple fabrication process using MEMS technology to manufacture three-dimensional miniature coils which can be used to generate magnetic fields to control the movement of magnetic beads. There are two types of micro coils including 2D and 3D layouts. In general, 3D micro coils could generate a higher magnetic field than 2D counterparts. In this study, a simple and reliable process for 3D micro coil fabrication has been developed. While compared to previous studies, this new process has several advantages including no requirement for via-holes, less process time and simpler fabrication.
Two arrangements of the micro coils including a rectangular and a circular array have been developed to control magnetic beads in fluids. Experimental data show both of them could be used successfully to manipulate magnetic beads.
Micron-size magnetic beads have been used to test the performance of the developed micro coils. Experimental data show that 3D micro coil could produce a magnetic force to attract magnetic beads while applying an electric current. As expected, the collection of the magnetic beads becomes more obvious while the current gradually increases. Besides, the array-type coils could be used to move beads in step-wise motion. The developed device thus provides a useful tool for manipulation of magnetic beads.
In conclusion, this study develops a new fabrication process for 3D micro coils which can be used to manipulate magnetic beads. The developed methods could be extended for manipulation of single molecules anchored on magnetic beads, which could be used to measure physical properties of the molecules.
1.R. Feynman, “There's Plenty of Room at the Bottom,” Journal of Micro Electro Mechanical Systems, Vol. 1, pp. 60-66, 1992.
2.K. Seiler, D. J. Harrison, and A. Manz, “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems,” Journal of Chromatography, Vol. 593, pp. 253-258, 1992.
3.The Technical Report of Institut fur Mikrotechnik Mainz (IMM), Mainz, Germany
4.T. Inoue, Y. Hamasaki, I. Shimoyama, H. Miura, “Micromanipulation Using a Microcoil Array,” Proceeding MEMS, pp. 2208-2213, 1996.
5.D. J. Sadler, W. Zhang, and C. H. Ahn, “Micromachined Semi-Encapsulaed Spiral Inductors for Micro Electro Mechanical Systems (MEMS) Applications,” Proceeding MEMS, pp. 3319-3323, 1997.
6.X. Ding, K. Kuribayashi, and T. Hashida, “Development of a Planar Type Micro Electro Magnetic Distance Sensor using High Aspect Ratio Photoresist and Its Application,” Proceeding MEMS, pp. 227-233,1999.
7.J. Y. Park, “High Q Spiral-type Microinductors on Silicon Substrates,” Proceeding MEMS, pp. 3544-3546, 1999.
8.C. H. Ahn and M. G. Allen, “A Fully Integrated Micromachined Magnetic Particle Manipulator and Separator,” Proceeding MEMS, pp. 91-96, 1994.
9.B. Lochel, A. Maciossek, M. Rothe, and W. Windbracke, “Micro Coil Fabricated by UV Depth Lithography and Galvanoplating,” Transducers, pp. 264-267, 1995.
10.D. J. Young, V. Malba, J. J. Ou, A. F. Bemhardt, and B. E. Boser, “Monolithic High-Performance Three-Dimensional Coil Inductors for Wireless Communication Applications,” Proceeding MEMS, pp. 67-70, 1997.
11.J. Y. Park, S. H. Han, W. P. Taylor, and M. G. Allen, “Fully Integrated Micromachined Inductors with Electroplated Anisotropic Magnetic Cores,” Proceeding MEMS, pp. 379-385, 1998.
12.J. B. Yoon, C. H. Han, E. Yoon, K. Lee, and C. K. Kim, “ Monolithic Fabrication of Electroplated Solenoid Inductors Using Three-Dimensional Photolithography of a Thick Photoresist,” Japanese Journal of Applied Physics, Vol. 37, pp. 7081-7085, 1998.
13.Y. J. Kim and M. G. Allen, “Surface Micromachined Solenoid Inductors for High Frequency Applications,” Proceeding MEMS, pp. 26-33, 1998.
14.J. B. Yoon, C. H. Han, E. Yoon, and C. K. Kim, “Monolithic Integration of 3-D Electroplated Microstructures with Unlimited Number of Levels Using Planarization with a Sacrifical Metallic Mold (PSMM),” Proceeding MEMS, Vol. 624-629, 1999.
15.A. Kruusing, S. Leppävuori and A. Uusimäki, “Printed Solenoid Windings for Miniature Electromagnetic Devices,” Journal of Micromechanics and Microengineering , Vol. 9 , pp. 166-169, 1999.
16.Y. H. joung, S. Nuttinck, S. W. Yoon, M. G. Allen and J. Laskar, “Integrated Inductors in the Chip-to-Board Interconnect Layer Fabricated Using Solderless Electroplating Bonding,” Proceeding MEMS, 1409-1412, 2002.
17.N. Chomnawang, J.B. Lee, and W. A. Davis, “Surface Micromachined Arch-shape 3D Solenoid Inductors for high Frequency Applications,” SPIE Journal of Microlithography, Microfabrication, and Microsystems, Vol. 2, pp. 275-281, 2003.
18.X. Yu and D. M. Klymyshyn, “Modeling and Analysis of LIGA Structural Micromachinined Inductors on CMOS/BiCMOS Substrate”, Proceeding MEMS, pp. 421-424, 2005.
19.T. L. Peck, R. L. Magin and P. C. Lauterbur, “Design and Analysis of Microcoils for NMR Microscopy,” Journal of Magnetic Resonance, Series B, Vol.108, pp. 114-124. 1995.
20.H. Lee, A. M Purdon, V. Chu, and R. M. Westervelt, “Controlled Assembly of Magnetic Nanoparticles from Magnetotactic Bacteria using Microelectromagnets Arrays,” Nano Letters, Vol. 4, pp. 995-998, 2004.
21.J. W. Choi, T. M. Liakopoulos, and C. H. Ahn, “An On-chip Magnetic Bead Separator Using Spiral Electromagnets with Semi-encapsulated Permalloy, ”Biosensors and Bioelectronics, Vol. 16, pp. 409-416, 2001.
22.J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson, and C. H. Ahn, “An Integrated Microfluidic Biochemical Detection System for Protein Analysis with Magnetic Bead-based Sampling Capabilities,” Lab on Chip, Vol. 2, pp. 27-30, 2002.
23.A. Rida, V. Fernandez and M. A. M. Gijs, “Planar Coil-Based Microsystem for the Long-Range Transport of Magnetic Beads,” Proceeding MEMS, pp. 292-295, 2003.
24.C. H. Chiou and G. B. Lee, “A Micromachined DNA Manipulation Platform for the Stretching and Rotation of a Single DNA Molecule,” Journal of Micromechanics and Microengineering, Vol.15, pp. 109-117, 2005.
25.J. Park, M. G. Allen, C. H. Ahn, “A Comparison of Micromachined Inductors with Different Magnetic Core Materials,” Proceeding of International Conference on Electronic Components and Technology, 1996.
26.R. Rong, J. W. Choi and C. H. Ahn, “A Functional Magnetic Bead/Biocell Sorter Using Fully Integrated Magnetic Micro/Nano Tips ,” Proceeding MEMS, pp. 530-533, 2003.
27.楊芯蘋 應用於微流體元件之微射出成型研究 國立成功大學航空太空工程學系碩士論文,2002。
28.N. P. Pham, E. Boellaard, W. Wien, L. D. M. van den Brekel, J. N. Burghartz, P. M. Sarro, “Metal Patterning on High Topography Surface for 3D RF Devices Fabrication,” Sensors and actuators A, Vol. 115, pp. 440-443 , 2004.
29.曾昭富 微幫浦整合於細胞性質量測晶片之設計製作及測試 國立成功大學工程科學系碩士論文,2004。
30.Data Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 25 & 50, released by MICRO-CHEM. Corp.
31.邱祈翰 單分子DNA微型磁箝操縱平台之研發 國立成功大學工程科學系博士論文,2005。