| 研究生: |
廖郁儒 Liao, Yu-Ru |
|---|---|
| 論文名稱: |
餵食半乳糖大白鼠水晶體蛋白醣化位置之研究 An in-vivo Study For The Site Specific Glycation of Galactosemic Rat Lens Crystallins |
| 指導教授: |
黃福永
HUANG, FU-YONG |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 大白鼠水晶體蛋白 、半乳糖血症 、白內障 、轉譯後修飾 、糖基化 |
| 外文關鍵詞: | Rat lens crystallins, Galatosemic, Cataract, post translation, Glycation |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用蛋白質體學的分析技術對餵食半乳糖誘使產生白內障的大白鼠之水晶體作研究,得到結果如下:由快速蛋白質液相層析儀分析水晶體內的水溶性水晶體蛋白,發現隨著得到白內障的時間增長大白鼠水晶體內的β水晶體蛋白和γ水晶體蛋白明顯的減少。另外,尿素可溶性蛋白中主要的成份β-A3、β-B1和β-B3的多胜肽片段出現被修飾的情形,如組胺酸(Histidine)、色胺酸(Tryptophan)、甲硫胺酸(Methionine)被氧化(Oxidation)、丙胺酸(Alanine)接有乙醯基、親水性的半胱胺酸(Cysteine)出現Oxalate Monoalkylamide,而水溶性蛋白成分中的β-A3、β-B1和β-B3多肽片段也有被氧化、乙醯化,但沒有出現Oxalate Monoalkylamide的修飾,這個差異可能就是造成β-A3、β-B1和β-B3水晶體蛋白從水溶性蛋白質變化成非水溶性蛋白質的原因之一,而這些蛋白質受到的修飾可能讓水晶體蛋白聚集形成非水溶性蛋白質造成水晶體混濁。
Both proteomics and LC-MS/MS have been used to intensively investigate the protein post translation. In this study, two-dimensional gel electrophoresis followed by LC-MS/MS analysis have been employed to study the protein glycation of galactosemic cataract rat lenses. It was found that after feeding galactose, the rat lens started to show cortical nucleus cataract at week three. And the water soluble fraction of the lens showed that the contents of βH and γ crystallins decrease significantly with the increase of feeding time. It was also found that β-A3、β-B1 and β-B3crystallin in urea soluble fraction of the cataract lens had undergone oxidative modification at Histidine, Trptopha, and Methionien residues, acetylation at Alanine residue, and oxalate monoalkylamide modification at Cysteine residue. Interestingly, the water soluble fraction of cataract rat lens also underwent oxidation and acetylation; however, no oxalate monoalkylamide modification was observed for β-A3、β-B1 and β-B3 crystallin. The difference in oxalate monoalkylamide modification in water soluble fraction may suggest that this modification is the main cause to cause the denaturation of rat lens crystallins as to cause the formation of cataract.
1. Arts, H. J. M., Den Dunnen, J. T., Lubsen, N. H., and Schoenmakers, J. G. G., (1987). Linkage between the βB2 and βB3 crystallin genes in man and rat: a remnant of an ancient β-crystallin gene cluster, Gene, 59(1), 127-135.
2. Aarts, H. J. M., Jacobs, E. H. M., van Willigen, G., Lubsen, N. H., and Schoenmakers, J. G.G. (1989). Different Evolution Rates within the Lens-Specific-Crystallin Gene Family, Journal of Molecular Evolution, 28,313-321.
3. Bax, B., Lapatto, R., Nalini, V., Driessen, H., Lindley, P. F., Mahadevan, D., Blundell, T., Slingsby, C., (1990). X-ray analysis of βB2 crystallin and evolution of oligomeric lens proteins. Nature, 347, 776-780.
4. Berbers, G. A. M., Hoekman, W. A., Bloemendal, H., de Jong, W. W., Kleinnschmidt, T., and Braunttzer, G., (1984). Homology between the primary structures of the major bovine β-crystallin chains, Eur. J. Biochem, 139, 467-479.
5. Berman, (1991). Biochemistry of the Eye, Biochemistry education, 19(3) 476.
6. Bhat, S. P. and Nagineni, C. N. (1989). αB Subunit of Lens-specific Protein α-Crystallins Present in Other Ocular and Non-Ocular Tissues, Biochemical and Biophysical Research Communications, 158(1), 319-325.
7. Borkman, R. F., Knight, G., and Obi, B., (1996). The Molecular Chaperone α-Crystallin Inhibits UV-Induced Protein Aggregation, Exp. Eye Res, 62, 141-148.
8. Carver, J, A., Nicholls, K. A., Aquilina, J. A., and Truscott, R, J, W. (1996). Age-related Changes in Bovine α-crystallin and High-molecularweight Protein, Exp. Eye Res, 63, 639-647.
9. De Jong, W. W, Caspers, G. J., and Leunissen, J. A. M. (1998). Genealogy of the a-crystallin-small heat-shock protein superfamily, International Journal of Biological Macromolecules, 22, 151-162.
10. Dillon, J., Spector, A., Nakanishi, K. (1976). Identification of Beta Carbolines Isolated from Fluorescent Human Lens Proteins. Nature, 259, 422-423.
11. Genealogy of the α-crystallin-small heat-shock protein superfamily, International Journal of Biological Macromolecules, 22, 151-162.
12. Harding, J. J., and Dilley, K. J., (1976). Structural Proteins of the Mammalian Lens: A Review with Emphasis on Changes in Development, Aging and Cataract, Exp. Eye Res, 22, 1-73.
13. Horwitz, J. (1992). α-Crystallin Can Function as A Molecular Chaperone, Biochemistry, 89, 10499-10453.
14. Horwitz, J. (2003). Alpha-crystallin, Experimental Eye Research, 76 145-153.
15. Horwitz, J. (2009). Alpha crystallin: The Quest for a Homogeneous Quaternary Structure, Experimental Eye Research, 88, 190-194.
16. Huang, W. Q., Zhangt, Z. P. and Fu., S.-C. (1990). Differential Effects of Galactose-Induced Cataractogenesis on the Soluble Crystallins of Rat Lens, Exp. Eye Res, 51, 79-85.
17. Huang, F. U., Ho, Y., Shaw, T. S. and Chuang, S. A. (2000). Functional and Structural Studies of a-Crystallin from Galactosemic Rat Lenses, Biochemical and Biophysical Research Communications, 273, 197-202.
18. Ingolia, T. D., and Craig, E. A. (1982). Four small Drosophila heat shock proteins are related to each other and to mammalian a-crystallin, Genetics, 79, 2360-2364.
19. Jungblut, P. R., Otto, A., Favor, J., Loëwe, M., Muëller, E. C., Kastnere, Sperling M. K. and Klose, J. (1998). Identification of Mouse Crystallins in 2D Protein Patterns by Sequencing and Mass Spectrometry. Application to Cataract Mutants, FEBS Letters, 435, 131-137.
20. Van Kamp, G. J., and Hoenders, H. J. (1973). The Distribution of the Soluble Proteins in the Calf Lens, 17, 417-426.
21. Khanova, H. A., Markossian, K. A., Kurganov, B. I., Samoilov, A. M., Kleimenov, S. Y., Levitsky, D. I., Yudin, I. K., Timofeeva, A. C., Muranov, K. O., and Ostrovsky, M. A. (2005). Mechanism of Chaperone-like Activity. Suppression of Thermal Aggregation of βL-Crystallin by α-Crystallin, Biochemistry, 44(47), 15480-15487.
22. Kopylova, L. V., Cherepanov, I. V., Snytnikova, O. A., Rumyantseva, Y. V., Kolosova, N. G., Tsentalovich, Y. P., and Sagdeev, R. Z. (2011). Age-Related Changes in the Water-Soluble Lens Protein Composition of Wistar and Accelerated-Senescence OXYS Rats, Molecular Vision, 17, 1457-1467.
23. Lubsen, N. H., Aarts, H. J. M. and Schoenmakers, J. G. G., (1988). The Evolution of Lenticular Proteins: The β-andγ-Crystallin Super Gene Family, Evolution of lenticular proteins, 51, 47-76.
24. Mach, H., Trautman, P. A., Thomson, J. A., and Lewis, R. V., and Middaugh, C. R. (1990). Inhibition of Alpha-Crystallin Aggregation by Gamma-Crystallin, The Journal of Biological Chem, 265, 4844-4848.
25. Mörner, C. T., (1984). Untersuchungen der Protein-substanzen in den lichtbrechenden Medien des Auges. Hoppe-Seyl. Zeit Physiol. Chem, 18(1), 61-106.
26. Mruthinti, S. S., Green, K. and Abraham, E. C. (1996). Inhibition of Cataracts in Moderately Diabetic Rats by Aminoguanidine, Exp. Eye Res, 62, 505-510.
27. Norledge, B. V., Hay, R. E., Bateman, O. E., Slingsby, C. and Driessen, P. C. (1997). Towards a Molecular Understanding of Phase Separation in the Lens: a Comparison of the X-ray Structures of Two High Tc γ- Crystallins, γE and γF, with Two Low Tc γ-Crystallins, γB and γd, Exp. Eye Res, 65, 609-630.
28. Rao, P. V., Horwitz and Zigler, Jr. S. (1993). Alpha-Crystallin, A Molecular Chaperone, Forms a Stable Comples with Carbonic Anhydrase Upon Heat Denaturation, Biochemical and Biophysical Research Communications, 190(3), 786-793.
29. Roy, D. and Spector, A. (1978). Disulfide-Linked High Molecular Weight Protein Associcated with Human Cataract. Biochem, 75, 3244-3248.
30. Rao, C. M., Raman, B., Ramakrishna, T., Rajaraman, K., Ghosh, D., Datta, S., Trivedi, V. D. and. Sukhaswami, M. B. (1998). Structural perturbation of a-Crystallin and its Chaperone-Like Activity, International Journal of Biological Macromolecules, 22, 271-281.
31. Ramanakoppa, N. H.,Vincent, V. M., David, S. R., Satoshi, M., Patrizio, O., Annuziata, L. (1992). Advanced Maillard reaction products as markers for tissue damage in diabetes and uraemia: relevance to diabetic nephropathy, Acta diabetologica, 29(4), 130-135
32. Sankeshi, V. Kumar,P. A., Naik, R. R., Sridhar, G., Kumar,M. P., Gopal, V. V. H. and Raju, T. N.(2013). Inhibition of Aldose Reductase by Aegle Marmelos and its Protective Role in Diabetic Cataract, Journal of Ethnopharmacology, Available online 1 July 2013.
33 Srinivasan, A. N., Nagineni, C. N., and SurPa.j Bhat, P. S. (1992). aA-crystallin Is Expressed in Non-ocular Tissues, Chemistry, 267(32), 23337-23341.
34. Sun, T. X., Das, B. K. and Liang, J. J.-N. (1997). Conformational and Functional Differences between Recombinant Human Lens aα- and aβ-Crystallin, The American Society for Biochemistry and Molecular Biology, 272(10), 6220-6225.
35. Ulrich, P. and Cerami, A. (2001). Protein Glycation, Diabetes, and Aging, Recent Progress in Hormone Research, 56(1), 1-22
36. Van Der Ouderaaw, F. J., De Jong, and Bloemend, H. (1973). The Amino-Acid Sequence of the αA2, Chain of Bovine α-Crystallin, Eur. J. Biochem. 39,(1), 207-222.
37. Wang, K. and Spector, A. (1995). α-Crystallin Can Act As a Chaperone Under Conditions of Oxidative Stress, Invesligative Ophthalmology & Visual Science, 36(2),1-11.
38. Wang, X., Garcia, C. M., Shui, Y. B. and Beebe, D. C. (2004). Expression and Regulation of α-, β-, and γ- Crystallins in Mammalian Lens Epithelial Cells, Investigative Ophthalmology & Visual Science, 45(10), 3608-3619.
39. Wang, Z. C., E, D., Batu, D. L., Saixi, Y. L., Zhang, B., and Ren, L. Q. (2011). 2D-DIGE Proteomic Analysis of Changes in Estrogen/Progesterone-Induced Rat Breast Hyperplasia upon Treatment with the Mongolian Remedy RuXian-I, Molecules,16(4), 3048-3065.
40. Wang, L., Liu, D. R., Liu, P., and Yu, Y. B. (2011). Proteomics Analysis of Water Insoluble-urea Soluble Crystallins from Normal and Dexamethasone Exposed lens, Molecular Vision, 17, 3423-3436.
41. Wistow, G., Slingsby, C. and Blundell, T. (1981). Eye-Lens Proteins: The Three-Dimensional Structure of /3-Crystallin, Pebs Letters, 133(1), 9-16.
42. Zhucheng, Y., Chamorro, M., Smith, D. L. and Smith, J. B. (1994): Identification of the major components of the high molecular weight crystallins from old human lenses. Exp. Eye Res, 13, 415-421.
43. R&D System Technical Information
http://www.rndsystems.com/cb_detail_objectname_SU05_GlycatedInsulin.aspx.
44. 元新眼科,(2007),眼的組織解剖
http://tw.myblog.yahoo.com/best-eye/article?mid=2&prev=3&l=a&fid=5
45. 張孟媛 與 侯育致,(2012),失去光明的眼睛:淺談白內障
http://sa.ylib.com/MagCont.aspx?Unit=easylearn&id=2005
46. 楊宜涵,(2012),淺論白內障
http://www.shs.edu.tw/works/essay/2012/03/2012033022333810.pdf