| 研究生: |
廖于舜 Liao, Yu-Shun |
|---|---|
| 論文名稱: |
鉛與碲化鉛在氯化膽鹼-尿素深共熔溶劑中的電化學行為 Electrochemical Behavior of Lead and Lead Telluride in ChCl/Urea Deep Eutectic Solvent |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 199 |
| 中文關鍵詞: | 深共熔溶劑 、電沉積 、鉛金屬 、碲化鉛 、廢棄鉛回收 |
| 外文關鍵詞: | Deep eutectic solvent, Electrodeposition, Lead, Lead Telluride, Recycle |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用深共熔溶劑(deep eutectic solvents, DESs),來進行鉛金屬的電化學行為研究及探討,並以回收廢棄鉛金屬為目的來進行鉛金屬電沉積實驗。另外以鉛金屬作為進一步延伸,進行了碲化鉛電化學之研究探討。
本實驗以氯化膽鹼-尿素(1:2莫耳比)作為溶劑,硫酸鉛及二氧化鉛兩種化合物作為溶質來進行鉛金屬的電化學行為探討,包括了以循環伏安法來判定鉛金屬溶於溶劑後的氧化還原現象,並使用不同掃描速率CV來判斷此系統是否為擴散控制機制及是否為可逆/不可逆反應系統,再進一步將數據處理即可求得溶液中Pb(II)之擴散係數及活化能。在金屬成核實驗中,分別使用三種不同電極來進行探討,目的是為了比較在金屬與非金屬電極上,此系統中鉛金屬的成核機制是否有所不同,將數據進一步處理計算則可求得成核密度及成核半徑。
在電沉積的部分,以不同鉛金屬化合物為溶質以及改變不同電沉積條件,包括不同電位、不同電量、攪拌與否等來探討其鍍層形貌上的差異,此外也嘗試了將電解液送至空氣下並加入水滴,及將多種鉛鹽混溶後的鍍層分析,目的在於更能因應現實環境的外在條件,最後則進行了電沉積之庫倫效率實驗,用以求得其電沉積庫倫效率。
在碲化鉛的部分,主要進行了定電位電沉積實驗,也成功的共鍍出碲化鉛合金,而利用各種溶質濃度比例及電位的改變可得到多種形貌的碲化鉛合金。
電沉積鍍層分析鑑定方面,分別以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)、X繞射分析儀(XRD),來分析鍍層表面的形貌、成分和晶型結構。實驗結果顯示,透過電沉積實驗確實能獲得高純度的鉛金屬及碲化鉛合金。
Deep eutectic solvent choline chloride-urea (DES ChCl/Urea) was used as the electrolyte to study the voltammetric behavior of Pb(II), Te(IV), and their mixtures. Te(IV) was introduced into the DES by the addition of TeCl4. Interertingly, when the PbSO4, PbO2, and PbO were dissolved in the ChCl/Urea, they exhibits the almost identical electrochemical behavior, indicating Pb(II) is formed in the DES regardless of what Pb compound is introduced. The experimental results indicated the the reduction of Pb(II) to Pb is an irreverisible process and controlled by diffusion at temperature varying from 333 to 363 K. The value of diffusion coefficient are about 10-8 cm2/s order, and the activation energy of PbSO4 and PbO2 for diffusion is determined to be 33.7 and 34.1 kJ/mol, respectively. The nucleation mechanism of Pb was determined to be three-dimensional instantaneous nucleation under diffusion control. The electrodeposition of Pb was achieved under constant potential or current at copper foil substrate. The electrodeposition of PbTe alloy was achieved under constant potential and in various molar ratio of [Pb(II)/Te(IV)] electrolytes at nickel foil. The morphology of PbTe alloy deposits significantly depends on applied potential and the molar ratio of [Pb(II)/Te(IV)] in electrolytes. The XRD and EDS analysis confirmed that the electrodeposits were consisted of high-pure Pb metal and the stoichiometric PbTe alloy.
[1] P. Walden, "Molecular weights and electrical conductivity of several fused salts," Bulletin of the Russian Academy of Sciences, pp. 405-422, 1914.
[2] F. H. Hurley and T. P. Wier, "THE ELECTRODEPOSITION OF ALUMINUM FROM NONAQUEOUS SOLUTIONS AT ROOM TEMPERATURE," Journal of the Electrochemical Society, vol. 98, pp. 207-212, 1951 1951.
[3] H. L. Chum, V. R. Koch, L. L. Miller, and R. A. Osteryoung, "ELECTROCHEMICAL SCRUTINY OF ORGANOMETALLIC IRON COMPLEXES AND HEXAMETHYLBENZENE IN A ROOM-TEMPERATURE MOLTEN-SALT," Journal of the American Chemical Society, vol. 97, pp. 3264-3265, 1975 1975.
[4] R. J. Gale, B. Gilbert, and R. A. Osteryoung, "RAMAN-SPECTRA OF MOLTEN ALUMINUM-CHLORIDE - 1-BUTYLPYRIDINIUM CHLORIDE SYSTEMS AT AMBIENT-TEMPERATURES," Inorganic Chemistry, vol. 17, pp. 2728-2729, 1978 1978.
[5] J. Robinson and R. A. Osteryoung, "ELECTROCHEMICAL AND SPECTROSCOPIC STUDY OF SOME AROMATIC-HYDROCARBONS IN THE ROOM-TEMPERATURE MOLTEN-SALT SYSTEM ALUMINUM CHLORIDE-N-BUTYLPYRIDINIUM CHLORIDE," Journal of the American Chemical Society, vol. 101, pp. 323-327, 1979 1979.
[6] J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, "DIALKYLIMIDAZOLIUM CHLOROALUMINATE MELTS - A NEW CLASS OF ROOM-TEMPERATURE IONIC LIQUIDS FOR ELECTROCHEMISTRY, SPECTROSCOPY, AND SYNTHESIS," Inorganic Chemistry, vol. 21, pp. 1263-1264, 1982 1982.
[7] J. S. Wilkes and M. J. Zaworotko, "AIR AND WATER STABLE 1-ETHYL-3-METHYLIMIDAZOLIUM BASED IONIC LIQUIDS," Journal of the Chemical Society-Chemical Communications, pp. 965-967, Jul 1 1992.
[8] S. Z. El Abedin and F. Endres, "Electrodeposition of metals and semiconductors in air- and water-stable ionic liquids," Chemphyschem, vol. 7, pp. 58-61, Jan 16 2006.
[9] T. Torimoto, T. Tsuda, K.-i. Okazaki, and S. Kuwabata, "New Frontiers in Materials Science Opened by Ionic Liquids," Advanced Materials, vol. 22, pp. 1196-1221, Mar 19 2010.
[10] D. S. Silvester and R. G. Compton, "Electrochemistry in Room Temperature Ionic Liquids: A Review and Some Possible Applications," Zeitschrift für Physikalische Chemie, vol. 220, pp. 1247-1274, 2006.
[11] J. Dupont, "On the Solid, Liquid and Solution Structural Organization of Imidazolium Ionic Liquids," Journal of the Brazilian Chemical Society, vol. 15, pp. 341-350, 2004.
[12] K. R. Seddon, A. Stark, and M. J. Torres, "Influence of chloride, water, and organic solvents on the physical properties of ionic liquids," Pure and Applied Chemistry, vol. 72, pp. 2275-2288, 2000.
[13] M. Morimitsu, N. Tanaka, and M. Matsunaga, "Induced Codeposition of Al–Mg Alloys in Lewis Acidic AlCl3–EMIC Room Temperature Molten Salts," Chemistry Lertters, vol. 29, pp. 1028-1029, 2000.
[14] Y. S. Fung and W. B. Zhang, "Electrochemical deposition of superconductor alloy precursor in a low melting molten salt medium," Journal of Applied Electrochemistry, vol. 87, pp. 857-861, 1997.
[15] L. Heerman and W. D'Olieslager, "Electrochemistry of Bismuth in a 67 Mole% AICI3-33 Mole% N-(n-Butyl)Pyridinium Chloride Room Temperature Molten Salt," Journal of The Electrochemical Society, vol. 138, pp. 1372-1376, 1991.
[16] J. S.-Y. Liu and I.-W. Sun, "Electrochemical Study of the Properties of Indium in Room Temperature Chloroaluminate Molten Salts," Journal of The Electrochemical Society, vol. 144, pp. 140-145, 1997.
[17] E. G.-S. Jeng and I.-W. Sun, "Electrochemistry of Thallium in the Basic Aluminum Chloride-i -methyl-3-ethylimidazolium Chloride Room Temperature Molten Salt," Journal of The Electrochemical Society, vol. 145, pp. 1196-1201, 1998.
[18] E. G.-S. Jeng and I. W. Sun, "Electrochemistry of Tellurium(IV) in the Basic Aluminum Chloride-i -Methyl-3-ethyli m idazol ium Chloride Room Temperature Molten Salt," Journal of The Electrochemical Society, vol. 144, pp. 2369-2374, 1997.
[19] T. Tsuda, C. L. Hussey, G. R. Stafford, and J. E. Bonevich, "Electrochemistry of Titanium and the Electrodeposition of Al-Ti Alloys in the Lewis Acidic Aluminum Chloride–1-Ethyl-3-methylimidazolium Chloride Melt," Journal of The Electrochemical Society, vol. 150, pp. C234-C243, 2003.
[20] S. Pye, J. Winnick, and P. A. Kohlt, "Iron, Copper, and Nickel Behavior in Buffered, Neutral Aluminum Chloride: 1 -Methyl-3-ethylimidazolium Chloride Molten Salt," Journal of The Electrochemical Society, vol. 144, pp. 1933-1938, 1997.
[21] M. Lipsztajn and R. A. Osteryoung, "Electrochemistry in Neutral Ambient-Temperature Ionic Liquids. 1. Studies of Iron(III), Neodymium(III), and Lithium(1)," Inorganic Chemistry, vol. 24, pp. 716-719, 1985.
[22] I. W. Sun and C. L. Hussey, "Electrochemical reduction of palladium(II) in the basic aluminum chloride + 1-methyl-3-ethylimidazolium chloride molten salt," Journal of Electroanalytical Chemistry, vol. 274, pp. 325-331, 1989.
[23] H. C. De Long, J. S. Wilkes, and R. T. Carlin, "Electrodeposition of Palladium and Adsorption of Palladium Chloride onto Solid Electrodes from Room Temperature Molten Salts," Journal of The Electrochemical Society, vol. 141, pp. 1000-1005, 1994.
[24] A. P. Abbott, C. A. Eardley, N. R. S. Farley, G. A. Griffith, and A. Pratt, "Electrodeposition of aluminium and aluminium/platinum alloys from AlCl3/benzyltrimethylammonium chloride room temperature ionic liquids," Journal of Applied Electrochemistry, vol. 31, pp. 1345-1350, 2001.
[25] M. Seo, K. Yoshida, H. Takahashi, and I. Sawamura, "Study on Anodic Deposition of Ferrous Ions on Gold by a Quartz Crystal Microbalance," Journal of The Electrochemical Society, vol. 139, pp. 3108-3111, 1992.
[26] M.-C. Lin, P.-Y. Chen, and I. W. Sun, "Electrodeposition of Zinc Telluride from a Zinc Chloride-1-Ethyl-3-methylimidazolium Chloride Molten Salt," Journal of The Electrochemical Society, vol. 148, pp. C653-C658, 2001.
[27] P.-Y. Chen and I. W. Sun, "Electrodeposition of cobalt and zinc cobalt alloys from a lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt," Electrochimica Acta, vol. 46, pp. 1169-1177, 2001.
[28] N. Koura, Y. Suzuki, Y. Idemoto, T. Kato, and F. Matsumoto, "Electrodeposition of Zn–Ni alloy from ZnCl2–NiCl2–EMIC and ZnCl2–NiCl2–EMIC–EtOH ambient-temperature molten salts," Surface and Coatings Technology, vol. 169-170, pp. 120-123, 2003.
[29] M. H. Yang and I.-W. Sun, "Electrodeposition of antimony in a water-stable 1-ethyl-3-methylimidazolium chloride tetrafluoroborate room temperature ionic liquid," Journal of Applied Electrochemistry, vol. 33, pp. 1077-1084, 2003.
[30] M.-H. Yang, M.-C. Yang, and I. W. Sun, "Electrodeposition of Indium Antimonide from the Water-Stable 1-Ethyl-3-methylimidazolium Chloride/Tetrafluoroborate Ionic Liquid," Journal of The Electrochemical Society, vol. 150, pp. C544-C548, 2003.
[31] Y. Katayama, S. Dan, T. Miura, and T. Kishi, "Electrochemical Behavior of Silver in 1-Ethyl-3-methylimidazolium Tetrafluoroborate Molten Salt," Journal of The Electrochemical Society, vol. 148, pp. C102-C105, 2001.
[32] P.-Y. Chen and I. W. Sun, "Electrochemistry of Cd(II) in the basic 1-ethyl-3-methylimidazolium chloride:tetrafluoroborate room temperature molten salt," Electrochimica Acta, vol. 45, pp. 3163-3170, 2000.
[33] P.-Y. Chen and C. L. Hussey, "Electrodeposition of cesium at mercury electrodes in the tri-1-butylmethylammonium bis((trifluoromethyl)sulfonyl)imide room-temperature ionic liquid," Electrochimica Acta, vol. 49, pp. 5125-5138, 2004.
[34] P.-Y. Chen and C. L. Hussey, "Electrochemistry of ionophore-coordinated Cs and Sr ions in the tri-1-butylmethylammonium bis((trifluoromethyl)sulfonyl)imide ionic liquid," Electrochimica Acta, vol. 50, pp. 2533-2540, 2005.
[35] K. Murase, K. Nitta, T. Hirato, and Y. Awakura, "Electrochemical behaviour of copper in trimethyl-n-hexylammonium bis((trifluoromrthyl)sulfonyl)amide, an ammonium imide-type room temperature molten salt," Journal of Applied Electrochemistry, vol. 31, pp. 1089-1094, 2001.
[36] P.-Y. Chen, "Electrodeposition of Pure Mn and Zn-Mn Alloys from the Tri-1 butylmethylammonium Bi ((trifluoromethyl) sulfonyl)imide Room Temperature Ionic Liquid," 207th meeting, Abstr. No. 1286, Electrochemical Society, 2005.
[37] J.-K. Chang, W.-T. Tsai, P.-Y. Chen, C.-H. Huang, F.-H. Yeh, and I. W. Sun, "Preparation of Manganese Thin Film in Room-Temperature Butylmethylpyrrolidinium Bis(trifluoromethylsulfony)imide Ionic Liquid and Its Application for Supercapacitors," Electrochemical and Solid-State Letters, vol. 10, pp. A9-A12, 2007.
[38] H. Sakaebe, H. Matsumoto, and K. Tatsumi, "Application of room temperature ionic liquids to Li batteries," Electrochimica Acta, vol. 53, pp. 1048-1054, 2007.
[39] K. G. Chittibabu, S. Hadjikyriacou, and L. Li, "Ionic Liquid Based Gel Electrolyte Compositions for Dye Sensitized Solar Cell," Materials Research Society Symposium Process, vol. 736, p. 245, 2002.
[40] E. Stathatos and P. Lianos, "A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid," Chemistry of Materials, vol. 15, pp. 1825-1829, 2003.
[41] H. Y. Xiong, T. Chen, X. H. Zhang, and S. F. Wang, "Electrochemical property and analysis application of biosensors in miscible nonaqueous media—Room-temperature ionic liquid," Electrochemistry Communications, vol. 9, pp. 1648-1654, 2007.
[42] G.-T. Wei, Z. Yang, and C.-J. Chen, "Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions," Analytica Chimica Acta, vol. 488, pp. 183-192, 2003.
[43] F. Endres and S. Z. El Abedin, "Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid," Chemical Communications, pp. 892-893, 2002.
[44] N. Audic, H. Clavier, M. Mauduit, and J.-C. Guillemin, "An Ionic Liquid-Supported Ruthenium Carbene Complex: A Robust and Recyclable Catalyst for Ring-Closing Olefin Metathesis in Ionic Liquids," Journal of the American Chemical Society, vol. 125, pp. 9248-9249, 2003.
[45] A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, and V. Tambyrajah, "Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains," Chemical Communications, pp. 2010-2011, 2001.
[46] A.-M. Popescu, C. Donath, and V. Constantin, "Density, viscosity and electrical conductivity of three choline chloride based ionic liquids," Bulgarian Chemical Communications, vol. 46, pp. 452-457, 2014.
[47] E. L. Smith, A. P. Abbott, and K. S. Ryder, "Deep eutectic solvents (DESs) and their applications," Chemical Reviews, vol. 114, pp. 11060-11082, Nov 12 2014.
[48] T. B. Scheffler and M. S. Thomson, presented at the Seventh International Conference on Melten Salts, The Electrochemical Society: Montreal, 1990.
[49] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, "Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: spectroscopic data. See http://www.rsc.org/suppdata/cc/b2/b210714g," Chemical Communications, pp. 70-71, 2003.
[50] A. P. Abbott, G. Capper, D. L. Davies, K. J. McKenzie, and S. U. Obi, "Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride," Journal of Chemical & Engineering Data, vol. 51, pp. 1280-1282, 2006.
[51] A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris, and E. Raven, "Extraction of glycerol from biodiesel into a eutectic based ionic liquid," Green Chemistry, vol. 9, pp. 868-872, 2007.
[52] A. P. Abbott, T. J. Bell, S. Handa, and B. Stoddart, "Cationic functionalisation of cellulose using a choline based ionic liquid analogue," Green Chemistry, vol. 8, pp. 784-786, 2006.
[53] A. P. Abbott, J. C. Barron, K. S. Ryder, and D. Wilson, "Eutectic-based ionic liquids with metal-containing anions and cations," Chemistry, vol. 13, pp. 6495-6501, 2007.
[54] J. Fannin, Armand A., D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, et al., "Properties of 1,3-Dialkylimldazollum Chloride-Aluminum Chloride Ionic Liquids. 2. Phase Transitions, Densities, Electrical Conductivities, and Viscosities," The Journal of Physical Chemistry, vol. 88, pp. 2614-2621, 1984.
[55] M. S. Sitze, E. R. Schreiter, E. V. Patterson, and R. G. Freeman, "Ionic Liquids Based on FeCl3 and FeCl2. Raman Scattering and ab Initio Calculations," Inorganic Chemistry, vol. 40, pp. 2298-2304, 2001.
[56] T. B. Scheffler and M. S. Thomson, "Seventh International Conference on Melten Salts," presented at the Seventh International Conference on Melten Salts, The Electrochemical Society: Montreal, 1990.
[57] S. Zein El Abedin, A. Y. Saad, H. K. Farag, N. Borisenko, Q. X. Liu, and F. Endres, "Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures," Electrochimica Acta, vol. 52, pp. 2746-2754, 2007.
[58] S. A. Bolkan and J. T. Yoke, "Room Temperature Fused Salts Based on Copper(1) Chloride-I-Methyl-3-ethylOmidarolSum Chloride Mixtures. 1. Physical Properties," Journal of Chemical & Engineering Data, vol. 31, pp. 194-197, 1986.
[59] J.-Z. Yang, Y. Jin, W.-G. Xu, Q.-G. Zhang, and S.-L. Zang, "Studies on mixture of ionic liquid EMIGaCl4 and EMIC," Fluid Phase Equilibria, vol. 227, pp. 41-46, 2005.
[60] A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, "Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids," J Am Chem Soc, vol. 126, pp. 9142-9147, Jul 28 2004.
[61] A. P. Abbott, J. C. Barron, and K. S. Ryder, "Electrolytic deposition of Zn coatings from ionic liquids based on choline chloride," Transactions of the Institute of Metal Finishing vol. 87, pp. 201-207, 2009.
[62] A. P. Abbott, J. C. Barron, G. Frisch, K. S. Ryder, and A. F. Silva, "The effect of additives on zinc electrodeposition from deep eutectic solvents," Electrochimica Acta, vol. 56, pp. 5272-5279, 2011.
[63] A. P. Abbott and K. J. McKenzie, "Application of ionic liquids to the electrodeposition of metals," Phys Chem Chem Phys, vol. 8, pp. 4265-4279, Oct 7 2006.
[64] A.-M. Popescu, A. Cojocaru, C. Donath, and V. Constantin, "Electrochemical study and electrodeposition of copper(I) in ionic liquid-reline," Chemical Research in Chinese Universities, vol. 29, pp. 991-997, 2013.
[65] A. P. Abbott, K. El Ttaib, G. Frisch, K. J. McKenzie, and K. S. Ryder, "Electrodeposition of copper composites from deep eutectic solvents based on choline chloride," Phys Chem Chem Phys, vol. 11, pp. 4269-4277, Jun 7 2009.
[66] A. P. Abbott, K. El Ttaib, K. S. Ryder, and E. L. Smith, "Electrodeposition of nickel using eutectic based ionic liquids," Transactions of the IMF, vol. 86, pp. 234-240, 2013.
[67] A. P. Abbott, K. El Ttaib, G. Frisch, K. S. Ryder, and D. Weston, "The electrodeposition of silver composites using deep eutectic solvents," Phys Chem Chem Phys, vol. 14, pp. 2443-2449, Feb 21 2012.
[68] A. P. Abbott, G. Capper, D. L. Davies, and R. K. Rasheed, "Ionic liquid analogues formed from hydrated metal salts," Chemistry, vol. 10, pp. 3769-3774, Aug 6 2004.
[69] H. M. Abood, A. P. Abbott, A. D. Ballantyne, and K. S. Ryder, "Do all ionic liquids need organic cations? Characterisation of [AlCl2.nAmide]+ AlCl4(-) and comparison with imidazolium based systems," Chem Commun (Camb), vol. 47, pp. 3523-3525, Mar 28 2011.
[70] E. Gómez, P. Cojocaru, L. Magagnin, and E. Valles, "Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent," Journal of Electroanalytical Chemistry, vol. 658, pp. 18-24, 2011.
[71] A.-M. J. Popescu, V. Constantin, M. Olteanu, O. Demidenko, and K. Yanushkevich, "Obtaining and Structural Characterization of the Electrodeposited
Metallic Copper from Ionic Liquids," Revista de Chimie, vol. 6, pp. 626-632, 2011.
[72] P. Sebastián, E. Vallés, and E. Gómez, "First stages of silver electrodeposition in a deep eutectic solvent. Comparative behavior in aqueous medium," Electrochimica Acta, vol. 112, pp. 149-158, 2013.
[73] H. Wang, Y. Jia, X. Wang, Y. Yao, D. Yue, and Y. Jing, "Electrochemical deposition of magnesium from analogous ionic liquid based on dimethylformamide," Electrochimica Acta, vol. 108, pp. 384-389, 2013.
[74] A. P. Abbott, G. Capper, K. J. McKenzie, and K. S. Ryder, "Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride," Journal of Electroanalytical Chemistry, vol. 599, pp. 288-294, 2007.
[75] Q. Chu, W. Wang, J. Liang, J. Hao, and Z. Zhen, "Electrodeposition of high Co content nanocrystalline Zn–Co alloys from a choline chloride-based ionic liquid," Materials Chemistry and Physics, vol. 142, pp. 539-544, 2013.
[76] M. Steichen, M. Thomassey, S. Siebentritt, and P. J. Dale, "Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells," Phys Chem Chem Phys, vol. 13, pp. 4292-4302, Mar 14 2011.
[77] J. C. Malaquias, M. Steichen, M. Thomassey, and P. J. Dale, "Electrodeposition of Cu–In alloys from a choline chloride based deep eutectic solvent for photovoltaic applications," Electrochimica Acta, vol. 103, pp. 15-22, 2013.
[78] P. Cojocaru, L. Magagnin, E. Gomez, and E. Vallés, "Using deep eutectic solvents to electrodeposit CoSm films and nanowires," Materials Letters, vol. 65, pp. 3597-3600, 2011.
[79] A. P. Abbott, G. Capper, K. J. McKenzie, and K. S. Ryder, "Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid," Electrochimica Acta, vol. 51, pp. 4420-4425, 2006.
[80] K. S. Ryder, A. P. Abbott, N. Dsouza, and P. Withey, "Electrolytic processing of superalloy aerospace castings using choline chloride-based ionic liquids," Transactions of the Institute of Metal Finishing, vol. 90, pp. 9-14, 2012.
[81] A. P. Abbott, G. Capper, D. L. Davies, R. Rasheed, and P. Shikotra, "Selective Extraction of Metals from Mixed Oxide Matrixes Using Choline-Based Ionic Liquids," Inorganic Chemistry, vol. 44, pp. 6497-6499, 2005.
[82] A. P. Abbott, G. Frisch, J. Hartley, and K. S. Ryder, "Processing of metals and metal oxides using ionic liquids," Green Chemistry, vol. 13, pp. 471-481, 2011.
[83] A. P. Abbott, J. Collins, I. Dalrymple, R. C. Harris, R. Mistry, F. Qiu, et al., "Processing of Electric Arc Furnace Dust using Deep Eutectic Solvents," Australian Journal of Chemistry, vol. 62, pp. 341-347, 2009.
[84] E. R. Parnham, E. A. Drylie, P. S. Wheatley, A. M. Z. Slawin, and R. E. Morris, "Ionothermal Materials Synthesis Using Unstable Deep-Eutectic Solvents as Template-Delivery Agents," Angewandte Chemie, vol. 118, pp. 5084-5088, 2006.
[85] E. R. Parnham, E. A. Drylie, P. S. Wheatley, A. M. Z. Slawin, and R. E. Morris, "Ionothermal Materials Synthesis Using Unstable Deep-Eutectic Solvents as Template-Delivery Agents," Angewandte Chemie International Edition, vol. 45, pp. 4962-4966, 2006.
[86] L. M. Li, K. Cheng, F. Wang, and J. Zhang, "Ionothermal synthesis of chiral metal phosphite open frameworks with in situ generated organic templates," Inorganic Chemistry, vol. 52, pp. 5654-5656, May 20 2013.
[87] R. B. Leron and M.-H. Li, "Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent," Thermochimica Acta, vol. 551, pp. 14-19, 2013.
[88] C.-M. Lin, R. B. Leron, A. R. Caparanga, and M.-H. Li, "Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems," The Journal of Chemical Thermodynamics, vol. 68, pp. 216-220, 2014.
[89] R. B. Leron, A. Caparanga, and M.-H. Li, "Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T=303.15–343.15K and moderate pressures," Journal of the Taiwan Institute of Chemical Engineers, vol. 44, pp. 879-885, 2013.
[90] Y. H. Choi, J. van Spronsen, Y. Dai, M. Verberne, F. Hollmann, I. W. Arends, et al., "Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?," Plant Physiol, vol. 156, pp. 1701-1705, Aug 2011.
[91] M. C. Gutierrez, M. L. Ferrer, L. Yuste, F. Rojo, and F. del Monte, "Bacteria incorporation in deep-eutectic solvents through freeze-drying," Angew Chem Int Ed Engl, vol. 49, pp. 2158-2162, Mar 15 2010.
[92] C. D. Gu, X. J. Xu, and J. P. Tu, "Fabrication and Wettability of Nanoporous Silver Film on Copper from Cholinen Chloride-Based Deep Eutectic Solvents," The Journal of Physical Chemistry C, vol. 114, pp. 13614-13619, 2010.
[93] C. D. Gu, Y. J. Mai, J. P. Zhou, and J. P. Tu, "SnO2 NANOCRYSTALLITE: NOVEL SYNTHETICnROUTE FROM DEEP EUTECTIC SOLVENT AND LITHIUM STORAGE PERFORMANCE," Functional Materials Letters, vol. 4, pp. 377-381, 2011.
[94] H. Zhang, Y. Lu, C.-D. Gu, X.-L. Wang, and J.-P. Tu, "Ionothermal synthesis and lithium storage performance of core/shell structured amorphous@crystalline Ni–P nanoparticles," CrystEngComm, vol. 14, pp. 7942-7950, 2012.
[95] G. F. Cai, C. D. Gu, J. Zhang, P. C. Liu, X. L. Wang, Y. H. You, et al., "Ultra fast electrochromic switching of nanostructured NiO films electrodeposited from choline chloride-based ionic liquid," Electrochimica Acta, vol. 87, pp. 341-347, 2013.
[96] C. D. Gu, Y. J. Mai, J. P. Zhou, Y. H. You, and J. P. Tu, "Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery," Journal of Power Sources, vol. 214, pp. 200-207, 2012.
[97] F. Chen, S. Xie, J. Zhang, and R. Liu, "Synthesis of spherical Fe3O4 magnetic nanoparticles by co-precipitation in choline chloride/urea deep eutectic solvent," Materials Letters, vol. 112, pp. 177-179, 2013.
[98] Y. Huang, F. Shen, J. La, G. Luo, J. Lai, C. Liu, et al., "Synthesis and Characterization of CuCl Nanoparticles in Deep Eutectic Solvents," Particulate Science and Technology, vol. 31, pp. 81-84, 2013.
[99] H. G. Liao, Y. X. Jiang, Z. Y. Zhou, S. P. Chen, and S. G. Sun, "Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis," Angew Chem Int Ed Engl, vol. 47, pp. 9100-9103, 2008.
[100] C. D. Gu, M. L. Huang, X. Ge, H. Zheng, X. L. Wang, and J. P. Tu, "NiO electrode for methanol electro-oxidation: Mesoporous vs. nanoparticulate," International Journal of Hydrogen Energy, vol. 39, pp. 10892-10901, 2014.
[101] X. Ge, C. D. Gu, X. L. Wang, and J. P. Tu, "Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials," J. Mater. Chem. A, vol. 2, pp. 17066-17076, 2014.
[102] X. Ge, C. D. Gu, X. L. Wang, and J. P. Tu, "Correlation between Microstructure and Electrochemical Behavior of the Mesoporous Co3O4Sheet and Its Ionothermal Synthesized Hydrotalcite-like α-Co(OH)2Precursor," The Journal of Physical Chemistry C, vol. 118, pp. 911-923, 2014.
[103] L. Wei, Y.-J. Fan, H.-H. Wang, N. Tian, Z.-Y. Zhou, and S.-G. Sun, "Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation," Electrochimica Acta, vol. 76, pp. 468-474, 2012.
[104] Y. H. Lu, W. H. Lin, C. Y. Yang, Y. H. Chiu, Y. C. Pu, M. H. Lee, et al., "A facile green antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photoactivities," Nanoscale, vol. 6, pp. 8796-8803, Aug 7 2014.
[105] J.-H. Oh and J.-S. Lee, "Synthesis of Gold Microstructures with Surface Nanoroughness Using a Deep Eutectic Solvent for Catalytic and Diagnostic Applications," Journal of Nanoscience and Nanotechnology, vol. 14, pp. 3753-3757, 2014.
[106] M. C. Gutierrez, D. Carriazo, A. Tamayo, R. Jimenez, F. Pico, J. M. Rojo, et al., "Deep-eutectic-solvent-assisted synthesis of hierarchical carbon electrodes exhibiting capacitance retention at high current densities," Chemistry, vol. 17, pp. 10533-10537, Sep 12 2011.
[107] J. D. Mota-Morales, M. C. Gutiérrez, M. L. Ferrer, R. Jiménez, P. Santiago, I. C. Sanchez, et al., "Synthesis of macroporous poly(acrylic acid)–carbon nanotube composites by frontal polymerization in deep-eutectic solvents," Journal of Materials Chemistry A, vol. 1, pp. 3970-3976, 2013.
[108] C. Mukesh, D. Mondal, M. Sharma, and K. Prasad, "Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers," Carbohydr Polym, vol. 103, pp. 466-471, Mar 15 2014.
[109] A. I. Bhatt, A. M. Bond, and J. Zhang, "Electrodeposition of lead on glassy carbon and mercury film electrodes from a distillable room temperature ionic liquid, DIMCARB," Journal of Solid State Electrochemistry, vol. 11, pp. 1593-1603, 2006.
[110] Y. Katayama, R. Fukui, and T. Miura, "Electrodeposition of Lead from 1-butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide Ionic Liquid," Journal of the Electrochemical Society, vol. 160, pp. D251-D255, 2013.
[111] F.-X. Wang, G.-B. Pan, Y.-D. Liu, and Y. Xiao, "Pb deposition onto Au(111) from acidic chloroaluminate ionic liquid," Chemical Physics Letters, vol. 488, pp. 112-115, 2010.
[112] R.-W. Tsai, Y.-T. Hsieh, P.-Y. Chen, and I. W. Sun, "Voltammetric study and electrodeposition of tellurium, lead, and lead telluride in room-temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate," Electrochimica Acta, vol. 137, pp. 49-56, 2014.
[113] A. Bakkar, "Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning," J Hazard Mater, vol. 280, pp. 191-199, Sep 15 2014.
[114] F. Golgovici, "Cathodic Deposition of Pb from Ionic Liquids Based on Choline Chloride," Chemical Bulletin "POLITEHNICA" University of Timisoara, vol. 56, pp. 62-66, 2011.
[115] F. Golgovici and T. Viasn, "Cathodic deposition of components in PbTe compounds using choline chloride-ethylene glycol ionic liquids," Chalcogenide Letters, vol. 8, p. 487497, 2011.
[116] J. Ru, Y. Hua, C. Xu, J. Li, Y. Li, D. Wang, et al., "Morphology-controlled preparation of lead powders by electrodeposition from different PbO-containing choline chloride-urea deep eutectic solvent," Applied Surface Science, vol. 335, pp. 153-159, 2015.
[117] H. Yang and R. G. Reddy, "Fundamental Studies on Electrochemical Deposition of Lead from Lead Oxide in 2:1 Urea/Choline Chloride Ionic Liquids," Journal of the Electrochemical Society, vol. 161, pp. D586-D592, 2014.
[118] J. Ru, Y. Hua, C. Xu, J. Li, Y. Li, D. Wang, et al., "Electrochemistry of Pb(II)/Pb during preparation of lead wires from PbO in choline chloride—urea deep eutectic solvent," Russian Journal of Electrochemistry, vol. 51, pp. 773-781, 2015.
[119] N. D. Nikolić, K. I. Popov, P. M. Živković, and G. Branković, "A new insight into the mechanism of lead electrodeposition: Ohmic-diffusion control of the electrodeposition process," Journal of Electroanalytical Chemistry, vol. 691, pp. 66-76, 2013.
[120] N. D. Nikolić, D. D. Vaštag, P. M. Živković, B. Jokić, and G. Branković, "Influence of the complex formation on the morphology of lead powder particles produced by the electrodeposition processes," Advanced Powder Technology, vol. 24, pp. 674-682, 2013.
[121] S. Kumar, Z. H. Khan, M. A. Majeed Khan, and M. Husain, "Studies on thin films of lead chalcogenides," Current Applied Physics, vol. 5, pp. 561-566, 2005.
[122] Z. H. Dughaish, "Lead telluride as a thermoelectric material for thermoelectric power generation," Physica B, vol. 322, pp. 205-223, 2002.
[123] A. Mondal, N. Mukherjee, S. Kumar Bhar, and D. Banerjee, "An electrochemical technique to deposit thin films of PbTe," Thin Solid Films, vol. 515, pp. 1255-1259, 2006.
[124] G. R. Li, C. Z. Yao, X. H. Lu, F. L. Zheng, Z. P. Feng, X. L. Yu, et al., "Facile and Efficient Electrochemical Synthesis of PbTe Dendritic Structures," Chemistry of Materials, vol. 20, p. 3306, 2008.
[125] X. D. Wei, C. F. Cai, B. P. Zhang, L. Hu, H. Z. Wu, Y. G. Zhang, et al., "PbTe photovoltaic mid-IR detectors," Journal of Infrared and Millimeter Waves, vol. 30, pp. 293-296, 2011.
[126] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, et al., "Cubic AgPbmSbTe2m: Bulk Thermoelectric Materials with High Figure of Merit," Science, vol. 303, pp. 818-821, 2004.
[127] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, "Quantum Dot Superlattice Thermoelectric Materials and Devices," Science, vol. 297, pp. 2229-2232, 2002.
[128] F. Xiao, B. Yoo, M. A. Ryan, K.-H. Lee, and N. V. Myung, "Electrodeposition of PbTe thin films from acidic nitrate baths," Electrochimica Acta, vol. 52, pp. 1101-1107, 2006.
[129] İ. Y. Erdoğan, T. Öznülüer, F. Bülbül, and Ü. Demir, "Characterization of size-quantized PbTe thin films synthesized by an electrochemical co-deposition method," Thin Solid Films, vol. 517, pp. 5419-5424, 2009.
[130] D. Pletcher, R. Greff, L. Peat, and J. Robinson, Instrumental methods in electrochemistry: Elsevier, 2001.
[131] B. J. Hwang, R. Santhanam, and Y. L. Lin, "Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite," Electrocheimica Acta, vol. 46, pp. 2843-2853, 2001.
[132] G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, "Electrochemical Nucleation Part.I General Considerations," Journal of Electroanalytical Chemistry, vol. 138, pp. 225-239, 1982.
[133] P. Allongue and E. Souteyrand, "Metal electrodeposition on semiconductors Part I. Comparison with glassy carbon in the case of platinum deposition," Journal of Electroanalytical Chemistry, vol. 286, pp. 217-237, 1990.
[134] G. Trejo, R. Ortega B., Y. Mecis V, P. Ozil, E. Chainet, and B. Nguyen, "Nucleation and Growth of Zinc from Chloride Concentrated Solutions," Journal of The Electrochemical Society, vol. 145, pp. 4090-4097, 1998.
[135] C. L. Hussey and X. Xu, "Electrodissolution and Electrodeposition of Lead in an Acidic Room Temperature Chloroaluminate Molten Salt," Journal of The Electrochemical Society, vol. 138, pp. 1886-1890, 1991.
[136] Y. F. Lin and I. W. Sun, "Electrodeposition of Zinc from a Mixture of Zinc Chloride and Neutral Aluminum Chloride-1-Methyl-3-ethylimidazolium Chloride Molten Salt," Journal of The Electrochemical Society, vol. 146, pp. 1054-1059, 1999.
[137] S. I. Hsiu and I. W. Sun, "Electrodeposition behaviour of cadmium telluride from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid," Journal of Applied Electrochemistry, vol. 34, pp. 1057-1063, 2004.
[138] J. Szymczak, S. Legeai, S. Diliberto, S. Migot, N. Stein, C. Boulanger, et al., "Template-free electrodeposition of tellurium nanostructures in a room-temperature ionic liquid," Electrochemistry Communications, vol. 24, pp. 57-60, 2012.
[139] V. Sudha and M. V. Sangaranarayanan, "Underpotential Deposition of Metals: Structural and Thermodynamic Considerations," The Journal of Physical Chemistry B, vol. 106, pp. 2699-2707, 2002.
[140] D. M. Kolb, M. Przasnys, and H. Gerische, "Underpotential deposition of metals and work function differences," Journal of Electroanalytical Chemistry, vol. 54, pp. 25-38, 1974.
[141] C. Frantz, Y. Zhang, J. Michler, and L. Philippe, "On the growth mechanism of electrodeposited PbTe dendrites," CrystEngComm, vol. 18, p. 2319, 2016.
[142] H. Nikol, A. Becht, and A. Vogler, "Photoluminescence of germanium(II), tin(II), and lead(II) chloride complexes in solution," Inorganic Chemistry, vol. 31, pp. 3277-3279, 1992.
[143] T. Tsuda, L. Boyd, S. Kuwabata, and C. L. Hussey, "Electrochemical behavior of copper(I) oxide in urea-choline chloride room-temperature melts," ECS Transactions, vol. 16, pp. 529-540, 2009.
[144] J. M. Hartley, C.-M. Ip, G. C. H. Forrest, K. Singh, S. J. Gurman, K. S. Ryder, et al., "EXAFS study into the speciation of metal salts dissolved in ionic liquids and deep eutectic solvents," Inorganic Chemistry, vol. 53, pp. 6280-6288, 2014.
[145] J. Ru, Y. Hua, D. Wang, C. Xu, J. Li, Y. Li, et al., "Mechanistic insight of in situ electrochemical reduction of solid PbO to lead in ChCl-EG deep eutectic solvent," Electrochimica Acta, vol. 186, pp. 455-464, 2015.
校內:2018-08-01公開