| 研究生: |
洪立杰 Hong, Li-Jie |
|---|---|
| 論文名稱: |
探討在表面聲波駐波微流體中側壁效應對駐波節點/反節點影響 Investigation of sidewall effect on pressure nodes/pressure anti-nodes in standing surface acoustic wave microfluidics |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 表面聲波 、側壁效應(sidewall effect) 、鈮酸鋰 、微流體 |
| 外文關鍵詞: | standing surface acoustic wave, sidewall effect, lithium niobate, microfluidics |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對微奈米粒子進行排列或分離的技術,已廣泛運用於化學加工、食品檢測、生醫工程等領域來進行分析,相對於傳統方式因有儀器設備昂貴、分析時間冗長、分離步驟繁雜等問題,聲輻射力則具備根據粒子的大小、密度、壓縮比等性質來進行區分的特性,不需預先在粒子上做任何處理,因此可廣泛使用在任何粒子上,而利用SSAW裝置可控制粒子到達壓力節點或反壓節點,以達到粒子分離及聚焦的效果。
當使用PDMS流道時,會產生所謂的側壁效應(sidewall effect),亦即流道側壁會形成節點,致使粒子除了聚焦於已預訂的節點位置外,也會聚焦於側壁,造成無法形成單一聚焦。本研究探討使用不同流道寬度及流體下,側壁效應對粒子聚焦位置的影響。
In this study, we investigated how the sidewall effect influences the location of pressure nodes or pressure anti-nodes in standing surface acoustic wave(SSAW) microfluidics. Both the medium and channel width were varied. It is found that the sidewall effect affects the distribution of nodes and anti-nodes so that they deviate from the positions which are computed by the 1-D model. Meanwhile, the distribution of nodes (or anti-nodes) is not uniform and equidistant.
The particles in DI water tend to be focused on nodes at the boundary of the microchannel instead of focusing on theoretical nodes which are close to the sidewalls. In glycerol-water solution with ratio 7:1, the anti-nodes (particles position) will be affected by the sidewall effect, and pushed to the middle of the flow channel.
[1] H. Tsutsui and C. M. Ho, "Cell separation by non-inertial force fields in microfluidic systems," Mechanics Research Communications, vol. 36, pp. 92-103, Jan 2009.
[2] P. Li, Z. Mao, Z. Peng, L. Zhou, Y. Chen, P.-H. Huang, et al., "Acoustic separation of circulating tumor cells," Proceedings of the National Academy of Sciences, p. 201504484, 2015.
[3] D. Xiaoyun, S. Jinjie, S. C. S. Lin, S. Yazdi, Q. B. Kiraly, and T. J. Huang, "Tunable patterning of microparticles and cells using standing surface acoustic waves," Lab on a Chip, vol. 12, pp. 2491-2497, 2012 2012.
[4] J. Shi, S. Yazdi, S.-C. S. Lin, X. Ding, I.-K. Chiang, K. Sharp, et al., "Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 11, pp. 2319-2324, 2011.
[5] S. Jinjie, D. Ahmed, M. Xiaole, and T. J. Huang, "Surface acoustic wave (SAW) induced patterning of micro beads in microfluidic channels," 2008 21st IEEE International Conference on Micro Electro Mechanical Systems - MEMS '08, pp. 26-29, 2007 2007.
[6] H. Li, J. R. Friend, and L. Y. Yeo, "A scaffold cell seeding method driven by surface acoustic waves," Biomaterials, vol. 28, pp. 4098-4104, Oct 2007.
[7] J. W. Strutt and L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London Mathematical Society, vol. 17, pp. 4-1, 1885.
[8] R. White and F. Voltmer, "Direct piezoelectric coupling to surface elastic waves," Applied physics letters, vol. 7, pp. 314-316, 1965.
[9] J. J. Shi, H. Huang, Z. Stratton, Y. P. Huang, and T. J. Huang, "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 9, pp. 3354-3359, 2009.
[10] A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, "Acoustofluidics 5: Building microfluidic acoustic resonators," Lab on a Chip, vol. 12, pp. 684-695, 2012.
[11] C. Campbell, Surface acoustic wave devices for mobile and wireless communications: Academic press, 1998.
[12] B. T. Matthias and J. P. Remeika, "FERROELECTRICITY IN THE ILMENITE STRUCTURE," Physical Review, vol. 76, pp. 1886-1887, 1949.
[13] K. Yosioka and Y. Kawasima, "Acoustic radiation pressure on a compressible sphere," Acta Acustica united with Acustica, vol. 5, pp. 167-173, 1955.
[14] J. Shi, X. Mao, D. Ahmed, A. Colletti, and T. J. Huang, "Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW)," Lab Chip, vol. 8, pp. 221-3, Feb 2008.
[15] S. Kerbel, "Design of harmonic surface acoustic wave (SAW) oscillators without external filtering and new data on the temperature coefficient of quartz'," in Proceedings of the 1974 IEEE ultrasonics symposium, Milwaukee, Wisconsin, USA, 1974, pp. 276-281.
[16] T. Saiki, K. Okada, and Y. Utsumi, "Highly Efficient Liquid Flow Actuator Operated by Surface Acoustic Waves," Electronics and Communications in Japan, vol. 94, pp. 10-16, Oct 2011.
[17] J. J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, "Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 9, pp. 2890-2895, 2009.
[18] S. X. Li, X. Y. Ding, F. Guo, Y. C. Chen, M. I. Lapsley, S. C. S. Lin, et al., "An On-Chip, Multichannel Droplet Sorter Using Standing Surface Acoustic Waves," Analytical Chemistry, vol. 85, pp. 5468-5474, Jun 2013.
[19] X. Y. Ding, Z. L. Peng, S. C. S. Lin, M. Geri, S. X. Li, P. Li, et al., "Cell separation using tilted-angle standing surface acoustic waves," Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 12992-12997, Sep 2014.
[20] M. Li, W. H. Li, J. Zhang, G. Alici, and W. Wen, "A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation," Journal of Physics D-Applied Physics, vol. 47, p. 29, Feb 2014.
[21] D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, "Continuous inertial focusing, ordering, and separation of particles in microchannels," Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 18892-18897, Nov 2007.
[22] S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, "Inertial microfluidics for continuous particle separation in spiral microchannels," Lab on a Chip, vol. 9, pp. 2973-2980, 2009.
[23] J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, "Review of cell and particle trapping in microfluidic systems," Analytica Chimica Acta, vol. 649, pp. 141-157, Sep 2009.
[24] M. Yamada and M. Seki, "Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics," Lab Chip, vol. 5, pp. 1233-9, Nov 2005.
[25] M. Yamada, M. Nakashima, and M. Seki, "Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel," Analytical Chemistry, vol. 76, pp. 5465-5471, Sep 2004.
[26] T. Mueller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, and G. Fuhr, "A 3-D microelectrode system for handling and caging single cells and particles," Biosensors and Bioelectronics, vol. 14, pp. 247-256, March 15 1999.
[27] I. Barbulovic-Nad, X. C. Xuan, J. S. H. Lee, and D. Q. Li, "DC-dielectrophoretic separation of microparticles using an oil droplet obstacle," Lab on a Chip, vol. 6, pp. 274-279, Feb 2006.
[28] J. Nam, H. Lim, D. Kim, and S. Shin, "Separation of platelets from whole blood using standing surface acoustic waves in a microchannel," Lab on a Chip, vol. 11, pp. 3361-3364, 2011.
[29] P. Li, Z. Mao, Z. Peng, L. Zhou, Y. Chen, P.-H. Huang, et al., "Acoustic separation of circulating tumor cells," Proceedings of the National Academy of Sciences, vol. 112, pp. 4970-4975, 2015.
[30] F. Guo, P. Li, J. B. French, Z. Mao, H. Zhao, S. Li, et al., "Controlling cell-cell interactions using surface acoustic waves," Proc Natl Acad Sci U S A, vol. 112, pp. 43-8, Jan 6 2015.
[31] Z.Mao, Y.Xie, F.Guo, L Ren, P-H Huang, et al., " Experimental and numerical studies on standing surface acoustic wave microfluidics," Lab Chip, pp. 515-524, 2016
校內:2020-01-01公開