簡易檢索 / 詳目顯示

研究生: 許涵雅
Hsu, Han-Ya
論文名稱: 相位與振幅的同步優化於光束偏轉超穎介面之設計與應用
Co-optimization of Phase and Amplitude for Beam Deflection Metasurfaces
指導教授: 吳品頡
Wu, Pin-Chieh
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 關鍵材料學位學程
Program on Key Materials
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 73
中文關鍵詞: 光束偏轉器超穎介面相位和振幅同步優化
外文關鍵詞: Beam deflection metasurface, Phase and amplitude co-optimization, Plasmonics
相關次數: 點閱:61下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大多數超穎介面元件設計僅考慮單元結構提供的相位延遲,然而,超穎單元主 要依賴不同的共振強度來實現相位延遲。這種操控方式必然會導致振幅在相同工作波 長下劇烈變化,從而使遠場波前的干涉狀況不符合預期,進而降低超穎元件的功能。 本文先以電磁學模擬方法,從反射光譜、相位變化等物理特性,由單元結構分析相位 分布,結合複數優化,設計並製造基於超穎介面之光束偏轉器。論文首先詳細探討在 不同奈米結構個數與異常反射角的情形下,光束偏轉器的特性。接著探討不同金屬奈 米結構厚度,對光束偏轉器的優化,及折射率與消光係數對於光束偏轉器的影響。最 後利用半導體製程製造基於相位優化與複數優化的光束偏轉器,並三種不同異常反射 角,分別為 10 度、 15 度、 20 度進行比較。研究結果發現,以複數優化的光束偏 轉器的與一般使用相位優化的光束偏轉器效能截然不同,對未來先進光電光學的研究、 發展與應用,提供了嶄新的奈米光學開發平台。

    Most metasurface designs focus on phase delay provided by the unit structure, but they primarily rely on varying resonance intensities, leading to significant amplitude changes and performance degradation. In this work, we propose a complex optimization method to design and realize a metasurface-based beam deflector. We evaluate the beam deflector's performance with different numbers of nanostructure and deflection angles. Typical e-beam lithography process is used to fabricate beam deflectors optimized by the complex optimization method, comparing three deflection angles — 10, 15, and 20 degrees. By comparing with the phase-only design, the proposed complex optimization significantly improves performance, offering a new platform for advanced optoelectronics researches and applications.

    口試合格證明 II 中文摘要 III 英文摘要 IV 致謝 XI 表目錄 XIV 圖目錄 XV 第一章緒論 1 前言 1 超穎介面 1 超穎介面簡介 1 侷域性表面電漿共振 2 廣義司乃耳定律 5 相位優化方法 7 研究動機 8 第二章 數值模擬方法 10 前言 10 電磁模擬方法 10 電磁模擬空間設定 11 第三章 樣品製作與光路量測 14 前言 14 半導體製程相關儀器介紹 14 蒸鍍與濺鍍 14 電子束微影系統 16 光學系統簡介 22 第四章 結果與討論 24 前言 24 CST 模擬結果 24 結構與數據庫 24 空間相位與反射強度分布 29 奈米結構厚度於光學響應之影響 31 雷射光斑與樣品位置關係 35 金屬鋁折射率於光學響應的影響 39 實際樣品電子顯微鏡與量測結果 44 根據電子顯微鏡修正之模擬數據 48 第五章 未來展望 52 參考資料 53

    [1] C. Zheng, J. Li, G. Wang, J. Liu, J. Li, Z. Yue, H. Zhao, X. Hao, Y. Zhang, and Y. Zhang, "All-dielectric metasurfaces capable of dual-channel complex amplitude modulation," Nanophotonics 10, 2959-2968 (2021)..
    [2] A. Alvarez‐Fernandez, C. Cummins, M. Saba, U. Steiner, G. Fleury, V. Ponsinet, and S. Guldin, "Block copolymer directed metamaterials and metasurfaces for novel optical devices," Advanced Optical Materials 9, 2100175 (2021).
    [3] W. Cai, and V. M. Shalaev, "Optical Metamaterials, 10, 6011," (New York: Springer, 2010).
    [4] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE transactions on microwave theory and techniques 47, 2075-2084 (1999).
    [5] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [6] X. Hao, Y. Chen, M. Liu, X. Min, X. Cheng, Q. Wang, Q. Xu, X. Zhang, and J. Han, "Recent Advances in Terahertz Manipulations Using C‐Shape‐Split‐Ring‐Resonator Metasurfaces," Advanced Optical Materials 12, 2302975 (2024).
    [7] D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, "Analysis of a waveguide-fed metasurface antenna," Physical Review Applied 8, 054048 (2017).
    [8] M. E. Badawe, T. S. Almoneef, and O. M. Ramahi, "A true metasurface antenna," Scientific reports 6, 19268 (2016).
    [9] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
    [10] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Physical review letters 95, 203901 (2005).
    [11] Q. Song, A. Baroni, R. Sawant, P. Ni, V. Brandli, S. Chenot, S. Vézian, B. Damilano, P. de Mierry, and S. Khadir, "Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces," Nature communications 11, 2651 (2020).
    [12] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan, "Broadband achromatic optical metasurface devices," Nature communications 8, 187 (2017).
    [13] Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation," Nano letters 14, 1394-1399 (2014).
    [14] W. Wan, J. Gao, and X. Yang, "Metasurface holograms for holographic imaging," Advanced Optical Materials 5, 1700541 (2017).
    [15] N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [16] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science 334, 333-337 (2011).
    [17] Y. Xie, W. Wang, H. Chen, A. Konneker, B.-I. Popa, and S. A. Cummer, "Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface," Nature communications 5, 5553 (2014).
    [18] Z. A. Zaky, A. M. Ahmed, A. S. Shalaby, and A. H. Aly, "Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation," Scientific Reports 10, 9736 (2020).
    [19] K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surface Science Reports 57, 59-112 (2005).
    [20] K. A. Willets, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).
    [21] P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, "Recent advances in planar optics: from plasmonic to dielectric metasurfaces," Optica 4, 139-152 (2017).
    [22] F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, "Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach," ACS nano 9, 4111-4119 (2015).
    [23] T. Yan, "Circular Polarization Hologram Realized by Pancharatnam-Berry Phase in Microwave Frequency," Journal of Computer and Communications 8, 134 (2020).
    [24] J.-s. Li, and J.-q. Yao, "Manipulation of terahertz wave using coding Pancharatnam–Berry phase metasurface," IEEE Photonics Journal 10, 1-12 (2018).
    [25] T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J. G. Liang, and Y. Q. Zhuang, "Bifunctional Pancharatnam‐Berry Metasurface with High‐Efficiency Helicity‐Dependent Transmissions and Reflections," Annalen der Physik 530, 1700321 (2018).
    [26] C.-Y. Yu, Q.-C. Zeng, C.-J. Yu, C.-Y. Han, and C.-M. Wang, "Scattering analysis and efficiency optimization of dielectric Pancharatnam–Berry-Phase metasurfaces," Nanomaterials 11, 586 (2021).
    [27] X W. Xu, X. Ling, D. Xu, S. Chen, S. Wen, and H. Luo, "Enhanced optical spatial differential operations via strong spin-orbit interactions in an anisotropic epsilon-near-zero slab," Physical Review A 104, 053513 (2021).
    [28] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nature nanotechnology 10, 308-312 (2015).
    [29] F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, "A review of gap-surface plasmon metasurfaces: fundamentals and applications," Nanophotonics 7, 1129-1156 (2018).
    [30] F. Ding, R. Deshpande, and S. I. Bozhevolnyi, "Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence," Light: Science & Applications 7, 17178-17178 (2018).
    [31] L. Bao, R. Y. Wu, X. Fu, Q. Ma, G. D. Bai, J. Mu, R. Jiang, and T. J. Cui, "Multi-beam forming and controls by metasurface with phase and amplitude modulations," IEEE Transactions on Antennas and Propagation 67, 6680-6685 (2019).
    [32] X. Song, L. Huang, C. Tang, J. Li, X. Li, J. Liu, Y. Wang, and T. Zentgraf, "Selective diffraction with complex amplitude modulation by dielectric metasurfaces," Advanced Optical Materials 6, 1701181 (2018).
    [33] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, and G.-Y. Guo, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano letters 12, 6223-6229 (2012).
    [34] E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1998)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE