| 研究生: |
郭虹佑 Kuo, Hung-Yu |
|---|---|
| 論文名稱: |
倒錐厭氣流体化床之水動力學特性 Hydrodynamic Characteristics of Tapered Anaerobic Fluidized-Bed Bioreactors |
| 指導教授: |
黃汝賢
Huang, Ju-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 模式 、厭氣流體化床 、倒錐角度 、穩態 、動態 、生物膜剝落速率 、膨脹床高度(體積) 、液相/氣相空隙率 、壓差 、水動力特性 |
| 外文關鍵詞: | Model, Anaerobic fluidized-bed, Biofilm detachment rate, Expanded-bed height (volume), Gas/Liquid hold-up, Pressure drop, Hydrodynamic characteristics, Dynamic state, Tapered angle, Steady state |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
倒錐厭氣流体化床之水動力學特性
摘 要
本研究先推導傳統與倒錐厭氣流體化床生物反應器(AFBBRs)之壓差及膨脹床高度(Hb)模式,其次利用傳統(0o)與倒錐(2.5o、5o) AFBBRs (液相表面流速ul = 31.7 ~ 46.1 m/h)處理乙酸合成廢水並改變兩個不同有機負荷(6.5 ~ 7.1、12.1 ~ 14.1 g COD/L-d)進行操作,俟每一組AFBBR達穩定狀態並測得出流水質(乙酸、COD)及生物顆粒特性參數(生物顆粒平均粒徑(dp,avg)、生物膜厚(d)及生物顆粒濕密度(rp))後,隨即由小到大改變迴流量(ul = 8.3 ~ 110.5 m/h)以進行產氣與不產氣之水動力動態實驗,並測得生物產氣量(Qg)、Hb、生物膜剝落速率(rd)及流体化床區之總壓差。
傳統與倒錐AFBBRs在有機負荷6.5 ~ 14.1 g COD/L-d之穩態操作(ul = 31.7 ~ 46.1 m/h)下,隨著有機負荷之倍數增加,生物產氣量亦呈現倍數增加;在流體化床區下層之dp,avg和d皆較上層者小(薄),流体化床區下層之rp皆較上層者大;流體化床區上、下層之生物顆粒粒徑分佈皆近似對數常態分布;液相與氣相流体在流体化床區造成之總壓差(DPt)隨著有機負荷之提高而增加。
傳統與倒錐AFBBRs在有機負荷6.5 ~ 14.1 g COD/L-d之動態操作(ul = 8.3 ~ 110.5 m/h)下,膨脹床體積(Vb)與rd二者皆隨著ul之增加而增加。在傳統AFBBR中,DPt隨ul之變化並不明顯,但在倒錐AFBBRs中,DPt隨ul之增加而明顯降低,且ul vs. Vb、ul vs. rd、ul vs. DPt及Hb vs. DPt間皆呈高度相關。傳統與倒錐AFBBRs之氣相流體在流体化床區造成DPt之減少百分比隨著有機負荷之增加而增加,且倒錐(5o) AFBBR氣相流體在流体化床區造成DPt之減少百分比會比傳統與倒錐(2.5o) AFBBRs者大。
本研究亦將傳統與倒錐AFBBRs之穩態及動態實驗之ul、Qg等操作數據,經多重迴歸分析求得氣相空隙率(eg)和k (尾跡體積與代謝產氣氣泡體積二者之比值)為ul、ug (氣相表面流速)函數之經驗式。傳統與倒錐AFBBRs之液相空隙率(el)隨ul之增加而增大,eg則隨ul之增加而減小,其中傳統AFBBR之el增加幅度比倒錐AFBBRs者大,且倒錐角度愈大時,el之增加幅度愈小。傳統AFBBR之DPt隨el之增加而有些微增加,倒錐AFBBRs之DPt則隨el之增加而明顯降低。傳統AFBBR之膨脹床高度(Hb)對DPt之增加幅度超過(1 – el)對DPt之減少幅度,而倒錐AFBBRs之Hb對DPt之增加幅度低於(1 – el)對DPt之減少幅度。傳統與倒錐AFBBRs之總壓差(DPt)、床膨脹高度(Hb)模式模擬值與該兩項參數之實驗值之偏差均介於(+20%) ~ (-25%)間。
Hydrodynamic Characteristics of Tapered
Anaerobic Fluidized-Bed Bioreactors
ABSTRACT
Theoretical models that can be used to calculate pressure drop and expanded-bed height (Hb) occurring in the conventional and tapered anaerobic fluidized-bed bioreactors (AFBBRs) were derived. Thereafter, a conventional and two tapered AFBBRs with respective tapered angles (q) of 0o, 2.5o and 5o were used to generate experimental data by varying superficial velocity (ul = 31.7 – 46.1 m/h) and two volumetric loading rates (VLRs = 6.5 – 7.1 and 12.1 – 14.1 g chemical oxygen demand (COD)/L-d. Once each AFBBR reached steady state, effluent water quality (acetate and COD) and bioparticle characteristic parameters (bioparticle diameter, dp,avg; biofilm thickness, d; and bioparticle's wet density, rp) were determined. Immediately following that, by varying recycle flow rates of AFBBRs in an increasing order (i.e., ul = 8.3 – 110.5 m/h), hydrodynamic experiments (with and without biogas generation) were conducted to generate experimental data of biogas production rate (Qg), Hb, biofilm detachment rate (rd), and pressure drop in the fluidized bed.
In the steady-state conventional and tapered AFBBRs (ul = 31.7 – 46.1 m/h; VLR = 6.5 – 7.1 and 12.1 – 14.1 g COD/L-d), the Qg increased doubly with a double increase in VLR. The dp,avg and d in the lower-part of the steady-state AFBBRs were all smaller (thinner) than those in the upper-part of the steady-state AFBBRs, while the rp in the lower-part of the steady-state AFBBRs was larger than that in the upper-part of the steady-state AFBBRs. Approximately logarithm normal distribution of bioparticles were observed in the lower- and upper-part of the steady-state AFBBRs. Additionally, total pressure drop (ΔPt) (i.e., caused by liquid and gas fluid flowing in the fluidized bed) increased with an increase in VLR.
In the dynamic-state conventional and tapered AFBBRs (ul = 8.3 – 110.5 m/h; VLR = 6.5 – 7.1 and 12.1 – 14.1 g COD/L-d), both expanded-bed volume (Vb) and rd increased with an increase in ul. In the dynamic-state conventional AFBBR, a change of ul resulted in a slight variation of ΔPt. However, in the steady-state tapered AFBBRs, an increase of ul resulted in a remarkable decrease of ΔPt; ul vs. Vb, ul vs. rd, ul vs. ΔPt, and Hb vs. ΔPt were strongly correlated. A percentage reduction in ΔPt (i.e., caused by gas fluid flowing in the fluidized bed) in the dynamic-state conventional and tapered AFBBRs increased with an increase in VLR; a percentage reduction in ΔPt in the AFBBR (q = 5o) was greater than that in the AFBBRs (q = 0o and 2.5o).
By using the operating data (ul and ug) obtained from the performance of the steady-state/dynamic-state conventional and tapered AFBBRs together with multiple regression analyses, the empirical relationships for mean wake-to-bubble-volume ratio (k) and gas phase hold-up (eg) (i.e., function of ul and superficial velocity of gas, ug) were obtained. In the conventional and tapered AFBBRs, el increased with an increase in ul, while eg decreased with an increased in ul; the extent of the increase ofεl in the AFBBRs was inversely proportional to its taper angle. The ΔPt slightly increased with an increase in el in the conventional AFBBR, while the ΔPt remarkably declined with an increase in el in the tapered AFBBRs. The extent of the increase of ΔPt (caused by Hb) was larger than that of the decrease of ΔPt (caused by (1 – el)) in the conventional AFBBR, while the extent of the increase of ΔPt (caused by Hb) was smaller than that of the decrease of the ΔPt (caused by (1 – el)) in the tapered AFBBRs. The calculated ΔPt and Hb in the conventional and tapered AFBBRs were (+20%) - (-25%) deviated from the experimental data.
參考文獻
吳春生 (1998) 厭氣流體化床代謝產氣對壓差之影響效應,八十七年度大專學生參與專題研究計畫,國科會專題計畫報告。
陳重男、黃士峰、黃義能 (1992) 厭氣流體化床中生物擔體特性研究。第十七屆廢水處理技術研討會論文集,pp. 275-277。
Andrews G. F. (1982) Fluidized-bed fermenters: a steady-state analysis. Biotechnol. Bioeng. 24 (9), 2013-2030.
Adrews G. F. and Tien C. (1981) Bacterial film growth in adsorbent surfaces. J. Am. Inst. Chem. Engng. 27 (3), 396-403.
Baker C. G. J., Kim S. D. and Gerougnou M. A. (1977) Wake characteristics of three-phase fluidized beds. Powder Technol. 18 (2), 201-207.
Bhatia V. K. and Epstein N. (1974) Three phase fluidization: a generalized wake model.In Proceedings of the International Symp. Fluid. Appli., pp. 380-392. Cepadues editions, Toulouse.
Boening P. H. and Larsen V. F. (1982) Anaerobic Fluidized bed whey treatment. Biotechnol. Bioengng. 24 (11), 2539-2556.
Briens L. A., Briens C. L., Margaritis A. and Hay J. (1997) Minimum liquid fluidization velocity in gas-liquid-solid fluidized beds. AIChE J. 43 (5), 1180-1189.
Chang H. T., Rittmann B. E., Amar D., Heim R., Ehlinger O. and Lesty Y. (1991) Biofilm detachment mechanisms in a liquid-fluidized bed. Biotechnol. Bioengng. 38 (5), 499-506.
Chang H. T. and Rittmann B. E. (1994) Predicting bed dynamics in three-phase fluidized-bed biofilm reactors. Wat. Sci. Tech. 29 (10-11), 231-241.
Characklis W. G. (1989) Biofilm process. In Biofilms (Edited by Characklis W. G. and Marshall K. C.), John Wiley & Sons, New York.
Chern S. H., Fan L.S. and Muroyama K. (1984) Hydrodynamics of concurrent gas-liquid-soild semifluidization with a liquid as the continuous phase. AIChE J. 30 (2), 288-294.
Converti A., Borghi M. D. and Ferraiolo G. (1993) Influence of organic loading rate on the anaerobic treatment of high strength semisynthetic wastewaters in a biological fluidized bed. J. Chem. Engng. 52, B21-B28.
Cooper P. F. and Wheeldon H. V. (1980) Fluidized- and expanded-bed reactors for wastewater treatment. Wat. Pollut. Control. 79 (2), 286-306.
Darton R. C. and Harrison D (1975) Gas and liquid hold-up in three-phase fluidization.Chem. Engng. Sci. 30, 581-586.
Denac M. and Dunn I. J. (1988) Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment. Biotechnol. Bioengng. 32, 159-173.
Diez Blanco V., Garcia Encina P. A. and Fdz-Polanco F. (1995) Effects of biofilm growth, gas and liquid velocities on the expansion of an anaerobic fluidized bed reactor (AFBBR). Wat. Res. 29 (7), 1649-1654.
Efremov G. I. and Vakhrushev I. A. (1970) A study of the hydrodynamics of three-phase fluidized beds. Int. Chem. Engng. 10, 37-41.
El-Temtamy S. A. and Epstein N. (1978) Bubble wake solids content in three-phase fluidized beds. Int. J. Multiphase Flow 4 (1), 19-31.
Ermakova A., Ziganshin, G.K. and Slin´ko M. G. (1970) Hydrodynamics of a gas-liquid reactor with a fluidized bed of solid matter, Theor. Foud. Chem. Engrg. 4, 84.
Foscolo P. U. and Gibilaro L. G. (1987) Fluid dynamic stability of fluidized suspensions: the particle bed model. Chem. Engng Sci. 42 (6), 1489-1500.
Huang J. S. and Wu, C. S. (1996) Specific energy dissipation rate for fluidized-bed bioreactors. Biotechnol. Bioengng. 50 (6), 643-654.
Huang J. S, Yan J. L. and Wu, C. S. (2000) Comparative bioparticle and hydrodynamic characteristics of conventional and tapered anaerobic fluidized-bed bioreactors. J. Chem. Tech. Biotechnol.75 (4), 269- 278.
Iza J. (1991) Fluidized bed reactors for anaerobic wastewater treatment. Wat. Sci. Tech. 24, 109-132.
Iza J., Keenan P. J. and Switzenbaum M. S. (1992) Anaerobic treatment of municipal solid waste landfill leachate: operation of a pilot scale hybrid UASB/AF reactor. Wat. Sci. Technol. 25 (7), 255-264.
Jansen J. and Kristensen G. H. (1980) Fixed film kinetics: Denitrification in fixed films, Report 80-59, Department of Sanitary Engineering, Technical University of Denmark.
Jean R. H. Ph. D. Dissertation (1988), The Ohio State University.
Kampmeier D. (1983) Total carbohydrate as an estimation of biomass in expanded-bed anaerobic filters. Personal communications were quoted by Wang T. T. (1984) Modeling of biological activity in expanded-bed, anaerobic activated carbon filters. Ph. D. dissertation, Univ. of Illionis, Urbana-Champaign, IL, USA.
Khan A. R. and Richardson J. F. (1987) The resistance to motion of a solid sphere in a fluid. Chem. Engrg. Commun. 62 (1-6), 135-150.
Khan A. R. and Richardson J. F. (1989) Fluid-particle interactions and flow characteristics of fluidized bads and settling suspensions of spherical particles. Chem. Engrg. Commun. 78, 111-130.
Kurt M., Dunn I. J. and Bourne J. R. (1987) Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor. Biotechnol. Bioengng 29 (4), 493-501.
Lindfield G. and Penny J. (2001) Numerical methods using Matlab, 2nd ed. Prentice Hall, New Jersey.
Lowe M. J., Duddridge J. E., Pritchard A. M. and Bott T. R. (1984) Biological-particulate fouling interactions: Effects of suspended particles on biofilms development. In Proc. First National UK Heat Transfer Conference, Leads, 391-400.
Miyahara T. and Fan L. S. (1992) Properties of a large bubble in a bubble swarm in a three-phase fluidized bed. J.Chem. Engng. Japan 25 (4), 378-382.
Muroyama K., Hashimoto K., Kawabata T. and Shiota M. (1978) Axial liquid mixing in three-phase fluidized beds. Kagaku Kogaku Ronbunshu. 4, 622-630.
Nacef S. (1991) Hydrodynamique des Lits Fluidises gas-liquide-soilde, Effect du distributeur et de la nature,” Ph.D. Thesis, Institut National Polytechniques de Lorraine, Ecole Nationale Seperieure des Industries Chimiques de Nancy, France.
Nelson T. B. and Skaates J. M. (1988) Attrition in a liquid fluidized bed bioreactor. Ind. Engng. Chem. Res. 27 (8), 1502-1505.
Ozturk I., Anderson G. K. and Saw C. B. (1989) Anaerobic fluidized-bed treatment of brewery wastes and bioenergy recovery. Wat. Sci. Technol. 21 (12), 1681-1684.
Peyton B. M. and Characklis W. G. (1993) A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment. Biotechnol. Bioengng. 41 (7), 728-735.
Pitt W. W., Hancher C. W. and Hsu H. W. (1978) The tapered fluidized bed bioreactor—an improved device for continuous cultivation. Am. Inst. Chem. Engng Symp. Ser. 74, 119-123.
Press W.H., Flannery B. P., Teukolsky S. A. and Vetterling W. T. (1989) Numerical recipes (FORTRAN). Cambridge University Press, London.
Rao Bhamidimarri S. M. and See T. T. (1992) Shear loss characteristics of an aerobic biofilm. Wat. Sci. Technol. 26(3-4), 595-600.
Richardson J. F. and Zaki W. N. (1954) Sedimentation and fluidization. Part 1. Trans Inst. Chem. Engrg. 32, 35-53.
Rittmann B. E. (1982) The effect of shear stress on loss rate. Biotechnol. Bioengr. 24 (2), 501-506.
Ro K. S. and Neethling, J. B. (1990) Terminal settling characteristics of bioparticles. Res. J. WPCF. 62 (7), 901-906.
Salkinoja-Salonen M. S., Nyns E. J., Sutton P. M., Berg L. and Wheatley A. D. (1983) Starting-up of an anaerobic fixed-film reactor. Wat. Sci. Technol. 15 (8-9), 305-308.
Sanz I. and Fdz-Polanco F. (1990) Low temperature treatment of municipal sewage in anaerobic fluidized bed reactors. Wat. Res. 24 (4), 463-469.
Scott C. D. and Hancher C. W. (1976) Use of a tapered fluidized bed as a continuous bioreactor. Biotechnol. Bioengng 18, 1393-1403.
Setiadi T. (1995) Predicting the bed expansion of an anoxic fluidized-bed bioreactor. Wat. Sci. Tech. 31 (7), 181-191.
Shieh W. K., Sutton P. M. and Kos P. (1981) Predicting reactor biomass concentration in a fluidized-bed system. J. Wat. Pollut. Control. Fed. 53 (11), 1574-1584.
Shieh W. K. and Hsu Y. (1996) Biomass loss from an anaerobic fluidized bed reactor. Wat. Res. 30 (5), 1253-1257.
Stathis T. C. (1980) Fluidized bed for biological wastewater treatment. J. Environ. Engrg (ASCE) 106, 227-241.
Stewart P. S. (1993) A model of biofilm detachment. Biotechnol. Bioengng. 41 (1), 111-117.
Sutherland J. P. and Wong K. Y. (1964) Some segregation effects in packed-fluidized beds. The Canadian J. of Chem. Engng. 8, 163-167.
Trulear M. G. and Characklis W. G. (1982) Dynamics of biofilm process. J. Wat. Poll. Control Fed. 54, 1288-1301.
Tseng S. K. and Lin M. R. (1990) Treatment of monosodium glutamate fermentation wastewater with anaerobic biological fluidized bed process. Wat. Sci. Technol. 22 (9), 149-155.
Webster G. H. and Perona J. J. (1988) Liquid mixing in a tapered fluidized bed. J. Am. Inst. Chem. Engng 34 (8), 1398-1402.
Wen C. Y. and Yu Y. H. (1996) Mechanics of fluidization. Chem. Engng. Prog. Symp. 62, 100-111.
Wilkie A. , Goto M., Bordeanx R. M. and Smith P. H. (1986) Enhancement of anaerobic Methanogenesis from napiergrass by addition of micronutrients. Biomass 11, 135-146.
Wilhelm R. H. and Kwauk M. (1948) Fluidization of solid particles. Chem. Engrg. Prog. 44 (3), 201-219.
Wu C. S. and Huang J. S. (1994) Expansion characteristics of tapered fluidized-bed bioreactors, In Advances in Bioprocess Engineering, by E. Galindo and T. Ramirez, Kluwer Academic Publishers, Netherlands, 355-363.
Wu C. S. and Huang J. S. (1995) Performance enhancement with tapered anaerobic fluidized-bed bioreactors. J. Chem. Tech. Biotechnol. 63 (4), 353-360.
Wu C. S., Huang J. S., Yan J. L. and Jih C. G. (1998) Consecutive reaction kinetics involving distributed fraction of methanogens in fluidized-bed bioreactors. Biotechnol. Bioengrg. 57 (3), 367-379.
Yu H. and Rittmann B. E. (1997) Predicting bed expansion and phase holdups for three-phase fluidized-bed reators with and without biofilm. Wat. Res. 31, 2604-2616.