簡易檢索 / 詳目顯示

研究生: 陳明宏
Chen, Ming-Hong
論文名稱: 硒化亞銅(Cu2Se)及硒化銅(CuSe)與硒化銦(In2Se3)經固態反應法合成硒化銅銦(CuInSe2)粉體之研究
Synthesis of CuInSe2 powders using CuxSe(X=1,2) and In2Se3 as raw materials via solid state reaction method
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 硒化銅銦固態反應法
外文關鍵詞: CuInSe2, Solid state reaction method
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硒化銅銦(CuInSe2)系列化合物為目前較具潛力之薄膜太陽能電池材料,其直接能隙非常接近太陽光的波長範圍,可吸收大部分太陽光,目前實驗室中轉化效率已達17.6% 。硒化銅銦(CuInSe2)太陽能電池生產方式目前仍以真空製程為主,但其設備成本昂貴,且不利於大面積生產。本研究嘗試以非真空製程方式合成硒化銅銦(CuInSe2)材料,以熱分解法先合成出硒化銦(In2Se3)、硒化亞銅(Cu2Se)與硒化銅(CuSe)粉體,並以硒化銅CuxSe(X=1,2)和硒化銦(In2Se3)為前驅粉體,經固態反應法合成硒化銅銦(CuInSe2)粉體。藉此探討硒化銅CuxSe(X=1,2)和硒化銦(In2Se3)的反應生成機制,並觀察硒化銅銦(CuInSe2)之生成動力學,最後以漿料塗佈方式將前驅粉體披覆在不鏽鋼基板上,經熱壓燒結形成硒化銅銦(CuInSe2)材料,並探討不同燒結溫度對硒化銅銦顯微結構與緻密化之影響。
    製備硒化銦(In2Se3)時,主要探討不同配位溶劑的影響,以油胺(OLA)為配位溶劑可以合成出純相之In2Se3粉體,且粒徑大小約為100~200nm,而濃度提高時,將使In2Se3粉末外形改變且晶粒尺寸些微變小;以油酸(OA)和十四烷基酸(MA)為配位溶劑,則會有金屬前驅物Cl離子的殘留而形成InSeCl相,其外觀為板狀或片狀且basal plane方向粒徑大小約為1~2μm。
    製備硒化亞銅(Cu2Se)時,當反應溫度較低時,會有Cu2Se和Cu3Se2兩相共存,其中Cu2Se晶粒尺寸約為1~2μm 而Cu3Se2晶粒尺寸均小於0.5μm,隨著反應時間拉長和溫度升高,Cu3Se2二次相則漸漸消失,最後藉由Ostwald ripening方式全部轉變為大顆粒的Cu2Se。
    製備硒化銅(CuSe)時,當反應溫度為 180℃及200℃時為純相之CuSe,其型態為三角或六角片狀和板狀,basal plane方向粒徑大小約為1~2μm,隨著溫度升高至220℃時則會有二次相Cu2-xSe之生成,主要原因為在較高溫時油胺(OLA)具有較強之還原性,將Cu2+還原成Cu1+所致。
    以In2Se3與Cu2Se為前驅粉體利用固態反應法合成α-CIS之合成溫度較高,其反應最後晶粒大小較接近In2Se3,且在反應過程中可觀察到β-CIS存在,因此推測CIS之生成主要為Cu擴散所主導,其反應活化能為124.3(KJ/mol)且為一維擴散控制。
    以In2Se3與CuSe為前驅粉體,利用固態反應法合成α-CIS之合成溫度較低,其反應機構亦主要為Cu擴散所主導,反應活化能為73.2(KJ/mol)且為一維擴散控制,另外在硒氣氛熱處理下,CuSe會相轉變成CuSe2進而與In2Se3反應形成CIS。最後探討不同前驅物對CIS生成活化能之影響,主要由於CuSe2鍵能較Cu2Se弱,且在反應過程中CuSe→CuSe2相變產生之Hedvall effect可提高反應速率,此外CuSe在加熱過程中會產生液相,因此以CuSe與In2Se3為前趨物反應生成CIS之活化能較Cu2Se為低。

    The CuInSe2 (CIS) compound is a more potential material of thin film solar cells due to a favorable band gap and relatively high absorption coefficient. Recently, the conversion efficiency of over 17.6% for CIS solar cell has been reported. So far, the vacuum process is still the main method to fabricate the CIS solar cells. However, its cost is too high and it is difficult to produce high quality and large-area CIS films. In this study, we try to synthesize CIS by non-vacuum method. The In2Se3, CuSe and Cu2Se powders were firstly synthesized by thermo-decompositon method. Then, CIS powders were synthesized using CuxSe (X=1,2) and In2Se3 as raw materials via solid state reaction method. Moreover, the CIS formation mechanisms of solid state reaction method using different CuxSe(X=1,2) as raw materials were investigated .Finally, the CIS absorber layers were formed on the stainless steel substrate via tape-casting and hot-pressed sintering method. The effect of annealing temperature after hot-pressed sintering on the microstructure of CIS was investigated.
    In the case of In2Se3 powders, the effects of different ligand solvents on the crystalline phase and morphology were studied. It was observed that the In2Se3 phase synthesized using OLA solvent exhibited crystallite size of about 100~200nm and the crystallite morphology depended on the reactant concentration. The InSeCl phase with crystallite size of about 1~2μm was obtained as the OA and MA were used as the solvent.
    For the Cu2Se powders, the reaction mechanism was investigated and observed that two crystalline phases (Cu2Se and Cu3Se2 with crystallite sizes of 1~2μm and below 0.5μm, respectively) coexisted at low reaction temperature. The Cu3Se2 crystallites decomposed and then re-precipitated as nano-sized Cu2-xSe crystallites on the surface of the coarser Cu2Se crystallites via Ostwald ripening process as the reaction temperature was increased.
    For the CuSe powders, CuSe crystallite phase was observed at reaction temperatures of 180℃ and 200℃.The crystallite morphology are triangular and hexagonal plate with the basal plane diameter of about 1~2 μm. As the reaction temperature was raised, the second phase, Cu2-xSe, will be formed due to the transformation of Cu2+ into Cu+, resulted from the stronger reduction ability of OLA at high temperature.
    Finally, the formation mechanisms of CIS powders using CuxSe (X=1, 2) and In2Se3 as raw materials via solid state reaction method were investigated. It was observed that the formation temperature of α-CIS powders synthesized using In2Se3 and Cu2Se as raw materials was higher than that using In2Se3 and CuSe. CuInSe2 formation from the reaction of In2Se3 with Cu2Se and CuSe powders follow diffusion-controlled reactions with apparent activation energies of 124.3 kJ/mol and 73.2 kJ/mol, respectively. Cu2Se or CuSe and In2Se3 phases react and form the intermediate phase, indium-rich β-CIS, and then transform into α-CIS crystallites with the size close to that of the In2Se3 reactant particle based on the TEM results, which indicated that the solid reaction kinetics may be dominated by the diffusion of Cu+ ions. As In2Se3 and CuSe were used as the raw materials, the formation of liquid phase due to the reaction of CuSe and Se and the Hedval effect resulting from the CuSe phase transforming into CuSe2 phase under Se atmosphere both enhanced the reaction rate.

    中文摘要 I ABSTRACT III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1前言 1 1-2研究目的 5 第二章 文獻回顧 6 2-1二硒化銅銦(CuInSe2,CIS) 6 2-1.1二硒化銅銦(CuInSe2)簡介 6 2-1.2二硒化銅銦(CuInSe2)晶體結構 7 2-1.3低成本二硒化銅銦(CuInSe2)薄膜之製備種類 10 2-1.4二硒化銅銦(CuInSe2)的合成方法 11 2-2硒化銦(In2Se3) 12 2-2.1硒化銦(In2Se3)簡介 12 2-2.2硒化銦(In2Se3)晶體結構 12 2-2.3硒化銦(In2Se3)合成方法 16 2-3.硒化亞銅(Cu2Se)與硒化銅(CuSe) 17 2-3.1硒化銅(CuxSey)簡介 17 2-3.2硒化亞銅(Cu2Se)晶體結構 17 2-3.3硒化亞銅(Cu2Se)合成方法 18 2-3.4硒化銅(CuSe)晶體結構 22 2-3.5硒化銅(CuSe)合成方法 22 2-4固態反應法(Solid state reaction) 24 2-4.1固態反應法(Solid state reaction)之簡介 24 2-4.2物質擴散方式 24 2-4.3反應動力學 25 2-5熱壓(Hot presssing)燒結 27 2-5.1熱壓 27 2-5.2CIS化合物之熱壓燒結 27 第三章 實驗方法與步驟 28 3-1實驗藥品 28 3-2實驗流程 29 3-2.1 In2Se3之製備流程 29 3-2.2 CuSe之製備流程 29 3-2.3 Cu2Se之製備流程 30 3-2.4固態反應法製備CuInSe2 30 3-2.5漿料塗佈法製備CuInSe2 31 3-3分析與量測 37 3-3.1結晶相鑑定 (X-ray Diffraction) 37 3-3.2 成份/組成分析 37 3-3.3 微結構分析 37 3-3.4 化學鍵結鑑定(傅立葉紅外線光譜儀,FTIR) 38 3-3.5熱差/熱重分析儀(DTA/DTG) 38 第四章 結果與討論 39 4-1不同配位體對In2Se3影響 39 4-1.1 配位體為油胺(OLA) 39 4-1.2 配位體為十四烷酸(MA) 43 4-1.3 配位體為十八烯酸(OA) 43 4-2 Cu2Se與CuSe 粉體合成反應機制探討 48 4-2.1Cu2Se粉體反應機制探討 48 4-2.2CuSe粉體反應機制探討 54 4-3二元前驅粉體合成CIS動力學與反應機制探討 60 4-3.1 以Cu2Se與In2Se3合成CIS 60 4-3.2 以CuSe與In2Se3合成CIS 69 4-4 二元前驅粉體薄膜經熱壓形成CIS探討 79 第五章 結論 82 5-1 合成In2Se3粉體 82 5-2 合成CuSe和Cu2Se 82 5-3 以In2Se3分別與Cu2Se,CuSe粉體合成CIS 82 5-4 二元前驅粉體薄膜經熱壓形成CIS探討 83 REFERENCES 84 附錄 89

    1 http://solarbuster.com/yahoo_site_admin/assets/docs/Solar_Buster_30MW_CIGS_Manufacturing_Turnkey_System.16982620.pdf. Solar Buster CIGS 技术白皮书.
    2 Kaelin, M. et al. Low-cost CIGS solar cells by paste coating and selenization. Thin Solid Films 480-481, 486-490, doi:DOI: 10.1016/j.tsf.2004.11.007 (2005).
    3 卓昱佑. 以CuxSe(x=1,2)和InxSey(x=1,2,y=2.3)合成CuInSe2黃銅礦吸光材料之研究. 國立台南大學綠色能源科技所碩士論文 (2010).
    4 Park, J. S., Dong, Z., Kim, S. & Perepezko, J. H. CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction. Journal of Applied Physics 87, 3683-3690, doi:10.1063/1.372400 (2000).
    5 Kaelin, M., Rudmann, D. & Tiwari, A. Low cost processing of CIGS thin film solar cells. Solar Energy 77, 749-756, doi:10.1016/j.solener.2004.08.015 (2004).
    6 Panthani, M. G. et al. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2(CIGS) Nanocrystal “Inks” for Printable Photovoltaics. Journal of the American Chemical Society 130, 16770-16777, doi:10.1021/ja805845q (2008).
    7 Yoon, S. et al. Nanoparticle-based approach for the formation of CIS solar cells. Solar Energy Materials and Solar Cells 93, 783-788, doi:10.1016/j.solmat.2008.09.061 (2009).
    8 Guo, Q. et al. Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells. Nano Letters 8, 2982-2987, doi:10.1021/nl802042g (2008).
    9 王彥超、朱筱鈞、陳嘉銘. 使用燒結製程製備CuInSe2粉末之特性研究. 工業材料雜誌 288期, 125-130 (2010).
    10 Lyu, D. Y. et al. Structural and optical characterization of single-phase γ-In2Se3 films with room-temperature photoluminescence. Journal of Alloys and Compounds 499, 104-107, doi:10.1016/j.jallcom.2010.03.130 (2010).
    11 J. Ye, S. S., Y. Nakamura, and O. Nittono,. Crystal Structures and Phase Transformation in In2Se3 Compound Semiconductor. Jpn. J. Appl. Phys. 37, 4264-4271 (1998).
    12 Pfitzner, A. & Lutz, H. D. Redetermination of the Crystal Structure of γ-In2Se3 by Twin Crystal X-Ray Method. Journal of Solid State Chemistry 124, 305-308, doi:DOI: 10.1006/jssc.1996.0241 (1996).
    13 Ye, J., Yoshida, T., Nakamura, Y. & Nittono, O. Optical activity in the vacancy ordered III2VI 3compound semiconductor (Ga0.3In0.7)2Se3. Applied Physics Letters 67, 3066-3068, doi:10.1063/1.114866 (1995).
    14 Jasinski, J. et al. Crystal structure of kappa-In2Se3. Applied Physics Letters 81, 4356-4358, doi:10.1063/1.1526925 (2002).
    15 Emziane, M., Marsillac, S. & Bernède, J. C. Preparation of highly oriented γ-In2Se3 thin films by a simple technique. Materials Chemistry and Physics 62, 84-87, doi:10.1016/s0254-0584(99)00145-5 (2000).
    16 Lyu, D. Y. et al. Growth and properties of single-phase γ-In2Se3 thin films on (111) Si substrate by AP-MOCVD using H2Se precursor. Solar Energy Materials and Solar Cells 91, 888-891, doi:10.1016/j.solmat.2007.02.002 (2007).
    17 Gysling, H. J., Wernberg, A. A. & Blanton, T. N. Molecular design of single-source precursors for 3-6 semiconductor films: control of phase and stoichiometry in indium selenide (InxSey) films deposited by a spray MOCVD process using single-source reagents. Chemistry of Materials 4, 900-905, doi:10.1021/cm00022a028 (1992).
    18 Deka, S. et al. Phosphine-Free Synthesis of p-Type Copper(I) Selenide Nanocrystals in Hot Coordinating Solvents. Journal of the American Chemical Society 132, 8912-8914, doi:10.1021/ja103223x (2010).
    19 Li, D. et al. Design and growth of dendritic Cu2-xSe and bunchy CuSe hierarchical crystalline aggregations. CrystEngComm 12, 1856-1861, doi:10.1039/B919087M (2010).
    20 Hillhouse, H. W. & Beard, M. C. Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Current Opinion in Colloid & Interface Science 14, 245-259, doi:10.1016/j.cocis.2009.05.002 (2009).
    21 Lin, F., Bian, G.-Q., Lei, Z.-X., Lu, Z.-J. & Dai, J. Solvothermal growth and morphology study of Cu2Se films. Solid State Sciences 11, 972-975, doi:10.1016/j.solidstatesciences.2009.02.017 (2009).
    22 Pai, R. R., John, T. T., Lakshmi, M., Vijayakumar, K. P. & Sudha Kartha, C. Observation of phase transitions in chemical bath deposited copper selenide thin films through conductivity studies. Thin Solid Films 473, 208-212, doi:10.1016/j.tsf.2004.04.020 (2005).
    23 P.Rahlfs.Z. Phys.Chem.B 31, 157-194 (1936).
    24 W.Borchert.Z. Kristallogr. 106, 5-24 (1945).
    25 R.D.Heyding & R.M.Murray. The crystal structures of Cu1•8Se, Cu3Se2, α- and γCuSe, CuSe2, and CuSe2II. Canadian Journal of Chemistry 54, 841-848, doi:doi:10.1139/v76-122 (1976).
    26 Oliveria, M., McMullan, R. K. & Wuensch, B. J. Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α-Cu2-xS, α-Cu2-xSe, and α-Ag2Se. Solid State Ionics 28-30, 1332-1337, doi:10.1016/0167-2738(88)90382-7 (1988).
    27 Yamamoto, K. & Kashida, S. X-ray study of the cation distribution in Cu2Se, Cu1.8Se and Cu1.8S; analysis by the maximum entropy method. Solid State Ionics 48, 241-248, doi:10.1016/0167-2738(91)90038-d (1991).
    28 Machado, K. D. et al. Structural study of Cu2-xSe alloys produced by mechanical alloying. Acta Crystallographica Section B StructuralScience 60, 282-286, doi:10.1107/S0108768104007475 (2004).
    29 Kashida, S. & Akai, J. X-ray diffraction and electron microscopy studies of the room-temperature structure of Cu2Se. Journal of Physics C: Solid State Physics 21, 5329, doi:10.1088/0022-3719/21/31/004 (1988).
    30 Liu, K., Liu, H., Wang, J. & Shi, L. Synthesis and characterization of Cu2Se prepared by hydrothermal co-reduction. Journal of Alloys and Compounds 484, 674-676, doi:10.1016/j.jallcom.2009.05.014 (2009).
    31 Deng, Z., Mansuripur, M. & Muscat, A. J. Synthesis of two-dimensional single-crystal berzelianite nanosheets and nanoplates with near-infrared optical absorption. Journal of Materials Chemistry 19, 6201-6206, doi:10.1039/B907452J (2009).
    32 Hu, Y., Afzaal, M., Malik, M. A. & O'Brien, P. Deposition of copper selenide thin films and nanoparticles. Journal of Crystal Growth 297, 61-65, doi:DOI: 10.1016/j.jcrysgro.2006.08.038 (2006).
    33 Glazov, V., Pashinkin, A. & Fedorov, V. Phase equilibria in the Cu-Se system. Inorganic Materials 36, 641-652, doi:10.1007/bf02758413 (2000).
    34 Hergert, F., Jost, S., Hock, R. & Purwins, M. A crystallographic description of experimentally identified formation reactions of Cu(In,Ga)Se2. Journal of Solid State Chemistry 179, 2394-2415, doi:10.1016/j.jssc.2006.04.033 (2006).
    35 余樹楨. 晶體之結構與性質. 渤海堂文化事業有限公司 台北 (1987).
    36 Milman, V. Klockmannite, CuSe: structure, properties and phase stability from ab initio modeling. Acta Crystallographica Section B 58, 437-447, doi:10.1107/s0108768102003269 (2002).
    37 Malik, M. A., O'Brien, P. & Revaprasadu, N. A Novel Route for the Preparation of CuSe and CuInSe2 Nanoparticles. Advanced Materials 11, 1441-1444, doi:10.1002/(sici)1521-4095(199912)11:17<1441::aid-adma1441>3.0.co;2-z (1999).
    38 Zainal, Z., Nagalingam, S. & Loo, T. C. Copper selenide thin films prepared using combination of chemical precipitation and dip coating method. Materials Letters 59, 1391-1394, doi:DOI: 10.1016/j.matlet.2004.12.044 (2005).
    39 Shaw, G. A. & Parkin, I. P. Liquid Ammonia Mediated Metathesis:  Synthesis of Binary Metal Chalcogenides and Pnictides. Inorganic Chemistry 40, 6940-6947, doi:10.1021/ic010648s (2001).
    40 張育綸. 鹼土碳酸鹽與氧化物的固態反應過程中相生成及物質擴散之研究. 國立成功大學資源工程研究所博士論文 (2009).
    41 Kingery, W. D., H.K.Bowen & D.R.Uhlmann. Introduction to Ceramics, 2nd. (John Wiley& Sons, 1976).
    42 Y.M. Chiang , W.D. Kingery & Birnie, D. Physical Ceramics. (John Wiley& Sons, 1997).
    43 C.H. Bamford , C. F. H. T. Comprehensive chemical kinetics Vol. 22 (Elsevier, 1980).
    44 Ning, Z., Da-Ming, Z. & Gong, Z. An investigation on preparation of CIGS targets by sintering process. Materials Science and Engineering: B 166, 34-40, doi:10.1016/j.mseb.2009.09.026 (2010).
    45 Tang, J., Hinds, S., Kelley, S. O. & Sargent, E. H. Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles. Chemistry of Materials 20, 6906-6910, doi:10.1021/cm801655w (2008).
    46 Xu, S., Kumar, S. & Nann, T. Rapid Synthesis of High-Quality InP Nanocrystals. Journal of the American Chemical Society 128, 1054-1055, doi:10.1021/ja057676k (2006).
    47 Ortega, I. K., Escribano, R., Herrero, V. J., Maté, B. & Moreno, M. A. The structure and vibrational frequencies of crystalline HCl trihydrate. Journal of Molecular Structure 742, 147-152, doi:10.1016/j.molstruc.2005.01.005 (2005).
    48 Struniewicz, C., Milet, A., Sadlej, J. & Moszynski, R. Theoretical study of the hydrogen chloride trihydrate. International Journal of Quantum Chemistry 90, 1151-1162, doi:10.1002/qua.10324 (2002).
    49 Bullen, C. R. & Mulvaney, P. Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene. Nano Letters 4, 2303-2307, doi:10.1021/nl0496724 (2004).
    50 Lakshmi, M. et al. Reversible Cu2-xSe<-->Cu3Se2 phase transformation in copper selenide thin films prepared by chemical bath deposition. Thin Solid Films 386, 127-132, doi:Doi: 10.1016/s0040-6090(00)01783-1 (2001).
    51 Lippkow, D. & Strehblow, H. H. Structural investigations of thin films of copper-selenide electrodeposited at elevated temperatures. Electrochimica Acta 43, 2131-2140, doi:Doi: 10.1016/s0013-4686(97)10148-7 (1998).
    52 Liu, X., Wu, N., Wunsch, B. H., Barsotti, R. J. & Stellacci, F. Shape-Controlled Growth of Micrometer-Sized Gold Crystals by a Slow Reduction Method. Small 2, 1046-1050, doi:10.1002/smll.200600219 (2006).
    53 盧立昕. 熱分解法合成硒化亞銅(Cu2Se)與硒化銦(In2Se3)奈米粒子及以固態反應法合成硒化銅銦(CuInSe2)粉末之研究. 國立成功大學資源工程研究所碩士論文 (2010).
    54 Kim, W. K. et al. Reaction kinetics of α-CuInSe2 formation from an In2Se3/CuSe bilayer precursor film. Journal of Physics and Chemistry of Solids 66, 1915-1919, doi:10.1016/j.jpcs.2005.09.074 (2005).
    55 Kim, S. et al. Reaction kinetics of CuInSe2 thin films grown from bilayer InSe/CuSe precursors. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23, 310-315, doi:10.1116/1.1861051 (2005).
    56 Hsiang, H.-I., Lu, L.-H., Chang, Y.-L., Ray, D. & Yen, F.-S. CuInSe2 nano-crystallite reaction kinetics using solid state reaction from Cu2Se and In2Se3 powders. Journal of Alloys and Compounds 509, 6950-6954, doi:10.1016/j.jallcom.2011.04.009 (2011).
    57 Purwins, M. et al. Kinetics of the reactive crystallization of CuInSe2 and CuGaSe2 chalcopyrite films for solar cell applications. Journal of Crystal Growth 287, 408-413, doi:10.1016/j.jcrysgro.2005.11.054 (2006).
    58 Wolf, D. & Müller, G. Kinetics of CIS-formation studied in situ by thin film calorimetry. Thin Solid Films 361-362, 155-160, doi:10.1016/s0040-6090(99)00776-2 (2000).
    59 Kim, W. K., Payzant, E. A., Yoon, S. & Anderson, T. J. In situ investigation on selenization kinetics of Cu-In precursor using time-resolved, high temperature X-ray diffraction. Journal of Crystal Growth 294, 231-235, doi:10.1016/j.jcrysgro.2006.05.066 (2006).

    下載圖示 校內:2016-08-30公開
    校外:2016-08-30公開
    QR CODE