| 研究生: |
劉耀中 Liou, Yao-Jhong |
|---|---|
| 論文名稱: |
綠色螢光蛋白發光團類似物的合成、熱異構化反應及π–π堆積作用之探討 Green Fluorescent Protein Chromophore Analogues:Synthesis, Thermoisomerization and Discussion of π–π Stacking Interaction |
| 指導教授: |
宋光生
Sung, Kuang-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 綠色螢光蛋白 、聚合物 、熱異構化反應 、激發雙體 |
| 外文關鍵詞: | p-HBDI, GFP, excimer, π–π stacking, aggregation-induced emission |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來有相當多針對綠色螢光蛋白發光團熱異構化反應機轉的研究,不過始終無法良好的證明p-HBDI的熱異構化反應機轉,我們利用溶劑同位素效應對熱異構化反應速率常數的影響,證明出其可能的反應機轉。另外野生型綠色螢光蛋白其螢光量子產率高達0.8,而用化學合成的方式和成出其發光團類似物的螢光量子產率卻僅有10-4,主因為其照光變成激發態後,會因能量內轉換散失因而使螢光降低。而野生型的綠色螢光蛋白發光團被卡在其蛋白質內部的beta-can之中因限制了此一光異構化反應因而放出強烈的螢光。我們希望將其利用聚合的方式形成一巨分子,並讓彼此發光團利用π-π堆積作用結合在一起形成更堅固的構型,或者將發光團接到兩親聚合物上因聚集誘導放光效應而使螢光量子產率上升。並且利用UV-Vis光譜、螢光放射光譜與螢光激發光譜觀察其光物理特性,並發現了激發雙體與基態複合物的生成,並推導出其可能的放光路徑。
In order to realize the mechanism of thermoisomerization of the green fluorescent protein chromophore (p-HBDI). We used solvent isotope effect to prove that hydrogen may involve in this reaction.
The fluorescence quantum yield of Wild-type GFP chromophore is 0.8. However
p-HBDI is 10-4. We used radical polymerization to synthesize GFP-like chromophore polymer p5, p5vs, p5ss and discus the different among them.
We expect the segmentation effect would strengthen the restriction of intramolecular rotation and improve the fluorescence quantum yield.
We found compound p5 would form ground state complex which has more rigid conformation through π–π stacking interaction. We observe that When we choose 300nm as excitation wavelength, the original maximum emission wavelength 435nm is quenched and replaced by 520 nm.
[1] Shimomura, O.; Johnson, F. H.; Saiga, Y. J. Cell. Comp. Physiol. 1962, 59, 223–239.
[2] Tsien, R.Y. The Green Fluorescent protein. Annu. Rev. Biochem. 1998, 67, 509–544.
[3] Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W. W.; Prasher, D. C. Science. 1994, 263, 802–805.
[4] Heim R, Prasher DC, Tsien RY. Proc. Natl. Acad. Sci. USA 1994, 91, 12501-12504
[5] Moberg, A. The Nobel Prize in Chemistry 2008. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2008/press.html (2008/10/08)
[6] Morise, H.; Shimomura, O.; Johnson, F. H.; Winant, J. Biochemistry. 1974, 13, 2656–2662.
[7] Stafforst, T.; Diederichsen, U. Eur. J. Org. Chem. 2007, pp 899–911.
[8] Prachayasittikul, V.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Tansila, N.; Naenna, T. J. Comput. Chem. 2007, 28, 1275.
[9] Haiech, J.; Follenius-Wund, A.; Bourotte, M.; Schmitt, M.; Iyice, F.; Lami, H. ; Bourguignon, J. J.; Pigault, C. Biophys J. 2003, 85, 1839.
[10] Meech, S. R.; Litvinenko, K. L. ; Webber, N. M. J. Phys. Chem. A. 2003 , 107, 2616.
[11] Tonge, P. J.; He, X.; Bell, A. F. Org. Lett. 2002, 4, 1523–1536.
[12] Yang. J. S.; Huang, G. J.; Liu, Y. H.; Peng, S. M. Chem. Commun. 2008, 11, 1344–1346
[13] Wu, S. Prog. Chem. 2005, 17, 15–39.
[14] Hager, B.; Schwarzinger, B.; Falk, H. Monatshefte. für. Chemie. 2006, 137, 163–168.
[15] Hong, Y. N.;Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 29, 4332-4353.
[16] Cao, X.; Meng, L.; Li, Z.; Mao, Y.; Lan, H.; Chen, L.; Fan, Y.; Yi, T. Langmuir 2014, 30, 11753−11760.
[17] Deng, H.; Su, Y.; Hu, M.; Jin, X.; He, L.; Pang, Y.; Dong, R.; Zhu, X. Macromolecules 2015, 48, 5969−5979
校內:2024-07-11公開