簡易檢索 / 詳目顯示

研究生: 張餘安
Chang, Yu-An
論文名稱: 高性能3D奈米柱金屬氧化物複層P-I-N二極體酒精氣體感測器的研製
Studies of 3D Nanorod Metal-Oxide Multi-Layers P-I-N Diode for Alcohol Gas Sensing Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 酒精氣體感測器3D奈米柱
外文關鍵詞: Alcohol (C2H5OH), gas sensor, 3D nanorod
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討整體3D奈米柱金屬氧化物複層P-I-N二極體酒精氣體感測器之研製。吾人研究利用硝酸銀及氫氟酸之蝕刻溶液於P型(100)矽基板上成長奈米柱狀結構。然後於此結構上使用射頻濺鍍系統(Sputtering system)成長不同的High-K薄膜(HfO2、Al2O3)作為本質層,再濺鍍上各種不同負型之金屬氧化物(WO3、SnO2)作為感測層。感測層中吾人選用金屬(Ag、Pd)及金屬氧化物TiO2作複層結構,用以增進感測能力,並利用EDS、AFM及SEM分別量測薄膜成份及觀察表面結構、厚度來探討這些材料的基本特性及做最佳選擇。最後利用熱蒸鍍系統(Thermal evaporation)成長金屬鈀(Pd)作為催化電極及接觸電極,並在矽基板背面成長金屬鋁作為歐姆電極,如此完成整個Pd/n-MOX/high-K/p-Si/Al PIN二極體之製作。
    吾人使用HP4145半導體量測分析儀來進行量測感測元件I-V特性並製作不同結構元件來比較其感測特性。結構共有四種包括 (1)不同感測層材料(SnO2、WO3),(2)不同本質絕緣層材料(HfO2、Al2O3),(3) 選用不同材料(Ag、Pd、TiO2) 製作複層感測層,(4)傳統平面薄膜式基板 (2D) 及3D奈米柱基板。實驗結果顯示,感測層選用SnO2及Al2O3本質層有最好的感測能力。 這是因為SnO2表面特性較佳能有效捕捉氧分子,且 Al2O3的能隙較高能降低漏電流所致。又使用3D奈米柱結構可提高接觸面積及增加氣體分子捕捉的能力。相較於與平面結構者,在3000 ppm下可將靈敏度由769 %大幅提升至1395 %,導致感測反應快速,時間可縮短10秒以上。另外製作複層感測的三種不同連接材料,以使用Ag者對酒精氣體感測能力最佳,因其能使感測層活性更有效提高。例如在溫度300℃、逆偏壓3V及濃度100ppm下,其靈敏度為272 %,相較於Pd及TiO2的221%和219%分別提高51 %及53 %。
    本論文發展之3D奈米柱夾銀複層PIN結構酒精感測能力,在100ppm濃度可高達334%, 相較已發表的SnO2製作於奈米碳管上的酒精氣體感測器的20% (100ppm),有非常顯著的提升。

    The thesis reports studies of the 3D nano rod metal-oxide multi-layers p-i-n diode for alcohol gas sensing applications. Firstly, the silicon nano rods were formed on the p type (100) silicon substrate with AgNO3 and HF mixed etching solution. Then, the intrinsic layer (HfO2、Al2O3) film was deposited on the nano rods with radio frequency sputtering system, and followed by deposition of various metal oxide such as WO3、SnO2 as sensing element, and their crystallinity, surface roughness and morphology were examined using EDS、AFM and SEM, respectively. To improve the sensitivity, we used multi-layers structure connected by Ag、Pd and TiO2. Finally, Pd metal was deposited thermally on the top as the catalyst and electrode contact to complete the device. To improve the sensitivity, we used multi-layers structure connected by Ag、Pd and TiO2. Experimental results show that 3D nano rod alcohol gas sensing applications can promote sensitivity.

    目錄(CONTENTS) 中文摘要 I 英文延伸摘要 III 第一章 導論 1 1-1前言 1 1-2氣體感測器 2 1-3酒精(C2H5OH)特性 3 1-4 3D奈米柱結構 4 1-5 各金屬氧化物(SnO2、WO3 、HfO2 、Al2O3)的特性 5 1-6 論文架構 6 第二章 基礎理論 7 2-1元件基礎理論 7 2-2感測器工作原理 9 2-3奈米柱狀蝕刻機制及原理 10 2-4濺鍍理論 12 2-4-1濺設現象 12 2-4-2輝光放電 12 2-4-3沉積現象 14 第三章 實驗與量測儀器和製程步驟 15 3-1氣體感測器成長系統 15 3-1-1射頻磁控濺鍍系統(Radio-Frequency Sputtering System) 15 3-1-2真空熱蒸著系統(Thermal Vacuum Evaporation System) 19 3-2氣體感測器量測系統 20 3-2-1高解析場發射掃描式電子顯微鏡(FE-SEM) 20 3-2-2原子力顯微鏡(Atomic Force Micriscope, AFM) 21 3-2-3氣體感測量測系統 21 3-2-4 HP4145B半導體參數分析儀 21 3-3製程步驟與成長參數 22 3-3-1矽基板清洗流程 22 3-3-2奈米柱狀結構蝕刻流程 23 3-3-3使用濺鍍系統成長本質層 23 3-3-4使用濺鍍系統成長感測層 24 3-3-5使用熱蒸鍍系統成長成長金屬 24 3-3-6使用濺鍍系統成長感測層 24 3-3-7使用熱蒸著系統成長電極 25 3-3-8量測實驗 25 第四章 結果與討論 26 4-1奈米柱狀結構分析 26 4-2 元件製作與特性量測 28 4-2-1感測層材料對酒精感測元件之影響 28 4-3本質絕緣層材料對酒精感測器之影響 29 4-4複層感測層添加對酒精感測器之影響 31 4-5奈米柱結對構酒精感測之影響 32 4-6針對複層感測層奈米柱結構作氣體選擇比 33 第五章 結論與未來展望 35 5-1結論 35 5-2 未來展望 36 ※參考文獻 37 附表 43 附圖 48

    ※參考文獻
    [1] S K Gupta, Aditee Joshi and Manmeet Kaur,” Development of gas sensors using ZnO nanostructures”, J. Chem. Sci., Vol. 122, No. 1, January 2010, pp. 57–62.
    [2] 蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會,第150期1999.
    [3] “C2H5OH”, Wikipedia.
    [4] “The Basics about Alcohol”, ICAP, International Center for Alcohol Policies.
    [5] An.T, Zhao, FQ Pei.Q, “Preparation, Characterization and Combustion Catalytic Activity of Nanopartical Super Thermites”, Chinese Journal of Inorganic Chemistry, vol.27, 2011, pp.231-238.
    [6] Rahman.A, Kosulnikov.S, “Subwavelength Optical Imaging with an Array of Silver Nanorods”, Journal of Nanophotonics, vol.5, 2011, pp.051601.
    [7] Ghahremaninezhad.A, Asselin.E, “Electrodeposition and Growth Mechanism of Copper Sulfide Nanowires”, Journal of Physical Chemistry C, vol.115, 2011, pp.9320-9334.
    [8] Slobodian.P, Riha.P, Lengalova.A “Effect of Compressive Strain on Electric Resistance of Multi-Wall Carbon Nanotube Networks”, Journal of Experimental Nanoscience, vol.6, 2011, pp.294-304.
    [9] Mi. BZ, Wang. HY, Zhou.YS, “Theoretical Investigations of Magnetic Properties of Ferromagnetic Single-Layered Nanobelts”, Physica Status Solidi B-Basic Solid State Physics, vol.248, 2011, pp.1280-1286.
    [10] R .S .Wagner, W.C Ellis, Appl.Phys.Lett. vol.4, 1964, pp.89.
    [11] R. S .Wagner, W.CEllis, Trans. Met .Soc, vol.233, 1965, pp.1053.
    [12] R. S .Wagner, “Whisker Technology”, Ed. A. P. Levitt, Wiley New York, 1970, pp.47-119.
    [13] Rahman.A, Kosulnikov.S, “Subwavelength Optical Imaging with an Array of Silver Nanorods”, Journal of Nanophotonics, vol.5, 2011, pp.051601.
    [14] S.Zhongliang, W.Shanqiang, S. Jerzy, “An Observation of Palladium Membrane Formation on A Porous Stainless Steel Substrate by Electroless Deposition”, Journal of Membrane Science, vol.280, 2006, pp.705-711.
    [15] Y.S. Cheng, K.L. Yeung, “Effects of Electroless Plating Chemistry on the Synthesis of Palladium Membranes”, Journal of Membrane Science, vol.182, 2001, pp.195-203.
    [16] R.Chepuri, K.Rao, C.Trivedi, “Chemical and Electrochemical Depositions of Platinum Group Metals and Their Applications”, Coordination Chemistry Reviews, vol.249, 2005, pp.613-631.
    [17] A. Dieguez, A. Romano-Rodriguez, J.R. Morante, U. Weimar, M.Schweizer-Berberich and W. Gopel, “Morphological analysis of nanocrystalline SnO2 for gas sensor applications”, Sensors and Actuators B 31 (1996) 1-8.
    [18] K. Ihokura: The Stannic Oxide Gas Sensor-Principles and Applications, CRC press, TOKYO (1994).
    [19] M.D. Giulio, G.Micocci, A.Serra, A. Tepore, R. Rella, P. Siciliano,“SnO2 thin films for gas sensor prepared by r.f. reactive sputtering”,Sensors and Actuators B 24-25 (1995) 465-468.
    [20] G.J. L i, S. Kawi, “High-surface-area SnO2: A novel semiconductoroxidegas sensor”, Materials Letters 34 (1998) 99-102.
    [21] K. C. Song, Y. Kang, “Preparation of high surface area tin oxide powders by a homogeneous precipitation method”, Materials Letters 42 (2000) 283-289.
    [22] H.P.Kim, J.J. Choi, H.W. Cheong, J.M. Kim, J.M. Kim, “Sensing mechanism of SnO2-based sensors for alcohols”, Sensors and Actuators B 13-14 (1993) 511-512.
    [23] H. Meixner, U. Lampe, “Metal oxide sensors”, Sensors and Actuators B 33 (1996) 198-202.
    [24] G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors”, Sensors and Actuators B 23 (1995) 103-109.
    [25] W. S. Hu., Z. G. Liu, Z. C. Wu, D. Feng, “Comparative study of laser ablation techniques for fabricating nanocrystalline SnO2 thin films for sensors”, Materials Letters 28 (1996) 369-372.
    [26] You-Pin Gong, Ai-Dong Li, Xu Qian, Chao Zhao and Di Wu,"Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol–gel method", J. Phys. D: Appl. Phys. 42 (2009).
    [27] S. M. Sze, “Physics of semiconductor devices”ch5, wiley, New York, 1980.
    [28] 林鴻明, 曾世杰, 奈米半導體材料之特殊氣體感測性質, 工業材料, 157 期(2000) 163-169.
    [29] Wen-I Hsu , Shui-Jinn Wang “Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching,” National Cheng Kung University, 2008.
    [30] Q. Micheal and S. Julian, “Aemiconductor Manufacturing Technology”, Prentice Hall, 443.
    [31] D. B. Lee, “Anisotropic etching of silicon,” J Appl Phys, vol 40, pp 4569, 1969.
    [32] P. J. Hesketh, C. Ju, and S. Gowda “Surface free energy model of silicon anisotropic etching,” J. Electrochem. Soc, vol. 140, pp. 1080, 1993.
    [33] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering,”Journal of Applied Physical, vol. 46, pp. 3381, 1975.
    [34] 王福貞,聞立時,“表面沉積技術”,機械工業出版社,pp.114-204.
    [35] Wen-I Hsu , Shui-Jinn Wang, “Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching”, National Cheng Kung University, 2008.
    [36] P. K. Basu, N. Saha, S. K. Jana, H. Saha, A. Lloyd Spetz, and S. Basu,” Schottky JunctionMethane Sensors Using Electrochemically Grown Nanocrystalline-Nanoporous ZnO Thin Films”, Journal of Sensors Volume 2009.
    [37] P. Mitra and A.K. Mukhopadhyay,” ZnO thin film as methane sensor”, Technical Science Vol. 55, No. 3, 2007.
    [38] J. Robertson,” High dielectric constant oxides”, Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).
    [39] Bedair Sm, Mcdermott Bt, Reid Kg, Neudeck Pg, Cooper Ja, Melloch Mr “Extremely Low-Leakage GaAs P-I-N Junctions And Memory Capacitors Grown By Atomic Layer Epitaxy”, IEEE Electron Device Letters,vol.11,1990,pp.261-263.
    [40] P.W. Atkins ,“Physical Chemistry Fifth edition” ,Oxford,1994,pp877-p878.J. Robertson, “High dielectric constant oxides”, Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).

    無法下載圖示 校內:2016-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE