| 研究生: |
李柏毅 Li, Bo-Yi |
|---|---|
| 論文名稱: |
旋轉柱電極系統中電解條件對己二腈電解合成之影響 A study on the influence of electrosynthesis condition for adiponitrile in a rotating rod electrode system |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 丙烯腈 、己二腈 、四級銨鹽 、旋轉電極 、有機物比例 、電解合成 |
| 外文關鍵詞: | Acrylonitrile, Adiponitrile, Rotating electrode, Quaternary Ammonium salt, Organic component ratio, Electrosynthesis |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
己二腈 (Adiponitrile, ADN)是一種多用途的有機化合物,在多種化工製程皆有其重要地位,尤其是作為尼龍66 (nylon 66)產業的上游原物料,台灣對尼龍66不論是民生或是工業需求都不斷提升,目前台灣的己二腈一向由國外輸入,其製造能力影響了本國尼龍相關產業的競爭力。己二腈可以透過丙烯腈 (Acrylonitrile,AN)二聚化而成,因為其步驟相對簡單,且反應過程對環境危害較小,是目前工業上主要生產己二腈的方法之一。
本研究主要利用旋轉柱電極系統 (Rotating rod electrode)進行,以線性掃描法分析各添加物單獨在電解液內的極化曲線,再針對含五種四級銨鹽 Tetramethylammonium Hydroxide (TMAH)、Tetraethylammonium Hydroxide (TEAH)、Tetrapropylammonium Hydroxide (TPAH)、Tetrabutylammonium Hydroxide (TBAP)、Methyl-tributylammonium Hydroxide (MBAP) 的電解液進行線性掃描與定電流電解以研究其對丙烯腈電解產物的影響。結果顯示,長碳鏈四級銨鹽抑制氫氣生成的效果較佳,在相同的四級銨鹽濃度下,親水性較差的四級銨鹽較有利丙烯腈還原反應朝向聚合反應發生。
本研究選擇兩種對丙烯腈電解產物組成影響差異較大之四級銨鹽 (TBAP、TEAH),以交流阻抗法分析各電壓下電雙層之電容值,進一步推論四級銨鹽在不同的擾動狀態下之吸附行為,結果顯示在非對稱吸附電位下,轉速提高至1000 RPM以上對四級銨鹽的吸附行為已經不構成干擾。以定電流電解方式分析轉軸轉動造成的質傳對電解產物組成之影響,發現提高轉速可提升聚合產物的產率與選擇率,此與丙烯腈的擴散阻力變化相關,轉速高於2000 RPM後產生的有機相油滴將促進丙烯腈的質傳作用。 在多種電流密度下進行定電流電解並改變轉速,結果顯示在電流密度為-0.3A/cm2、-0.4A/cm2下提升質傳使己二腈選擇性顯著提升。
在2000 RPM下在不同組成之有機相 (丙烯腈/己二腈)中以定電流方式電解,研究使用丙烯腈與輔助溶劑混合的電解條件下,丙烯腈在有機相內的初始濃度對各項電解結果之影響,並調整有機相比例以達到最大己二腈選擇率。不同丙烯腈與己二腈混合比例的電解液可以在有機相重量近似時顯著的改變產物比例與電流效率。結果顯示,使用高AN重量的有機相組成在AN佔22.2wt% ~ 36.1wt%時可以使下一小時內己二腈選擇率高於80%,而低AN重量的有機相組成在AN佔34.5%以上可以使下一小時內己二腈選擇率高於80%,顯示在高丙烯腈重量下較容易維持在高的丙烯腈電流效率並且能在較低的丙烯腈/己二腈比例下得到高己二腈選擇性。
關鍵字: 丙烯腈、己二腈、四級銨鹽、旋轉電極、有機物比例、電解合成
Adiponitrile (ADN) is an important raw material in the production of nylon66, which can be produced by electrosynthesis of acrylonitrile (AN). In order to find out the conditions for high ADN selectivity at steady state. A rotating rod electrode system was used to investigate the mass transfer effects by constant current electrosynthesis and electrochemical impedance spectroscopy techniques. The functions of additives in the electrolyte were also explored by both linear sweep voltammetry and constant current electrosynthesis of ADN.
The results showed that the lower hydrophilicity of quaternary ammonium salts (QAS) increases the selectivity of ADN and trimer during electrosynthesis. The productions of ADN and trimer increased with rotating speed of electrode ranging from 0 to 2500 RPM. When organic phase started to mixed with water phase at rotating speed higher than 2000 RPM, the mass transfer effects near the electrode were further improved. When the electrosynthesis was operated under high current density, increase rotating speed significantly increased the selectivity of ADN. Rotating speed played little effect on ADN selectivity at current density lower than -0.1A/cm2. In the electrolyte with 10.611g of AN in organic phase, the ADN selectivity was 70%. Adding more initial ADN up to 23.75g in the organic phase leaded to higher ADN selectivity up to 82%. On the other hand, the electrolyte with 4.05g of AN and 3.8g of ADN in organic phase, the ADN selectivity was 80%. Adding more initial ADN up to 23.75g, the ADN selectivity decreased down to 10%.
Key words: Acrylonitrile, Adiponitrile, Rotating electrode, Quaternary Ammonium salt, Organic component ratio, Electrosynthesis
[1] 屠庆华, "己二腈市场及其原料路线分析," 化学工业, no. 12, pp. 26-30, 2013.
[2] Y. Zhu, L. Gao, L. Wen, and B. Zong, "A review of adiponitrile industrial production processes and associated atom economies," Chinese Science Bulletin (Chinese Version), vol. 60, no. 16, p. 1488, 2015.
[3] Fischer, Rolf-Hartmuth, et al. "Method for continuous production of adiponitrile." U.S. Patent No. 9,890,113. 13 Feb. 2018.
[4] 卓淑珍, "國內紡織業者的關鍵成功因素-以尼龍66紡絲業為例," 臺北科技大學商業自動化與管理研究所學位論文, 台北科技大學, 2010.
[5] 劉揚, "己二腈的生产现状及市场分析," 河南化工, vol. 27, no. 5, pp. 30-32, 2010.
[6] B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. Palma, and R. Vasquez-Medrano, "Organic electrosynthesis: a promising green methodology in organic chemistry," Green Chemistry, vol. 12, no. 12, pp. 2099, 2010.
[7] 李伟善, "有机电合成概述," 1990.
[8] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications. Wiley New York, 1980.
[9] 王欢 and 陆嘉星, "有机电化学合成简谈," 电化学, vol. 17, no. 4, pp. 366-372, 2011.
[10] 盧星河, "有机电合成的理论与应用," 精細化工, 2000.
[11] A. J. Fry, "Organic Electrochemistry as a Community," The Electrochemical Society Interface 2009.
[12] 马淳安, 有机电化学合成导论. 科学出版社, 2002.
[13] A. M. Couper, D. Pletcher, and F. C. Walsh, "Electrode materials for electrosynthesis," Chemical Reviews, vol. 90, no. 5, pp. 837-865, 1990.
[14] T. Fuchigami, M. Atobe, and S. Inagi, Fundamentals and applications of organic electrochemistry. Wiley Online Library, 2014.
[15] A. Castellan, J. C. J. Bart, and S. Cavallaro, "Industrial production and use of adipic acid," Catalysis Today, vol. 9, no. 3, pp. 237-254, 1991.
[16] N. L. Morrow, "The industrial production and use of 1,3-butadiene," Environmental Health Perspectives, vol. 86, pp. 7-8, 1990.
[17] 刘启波, 霍光飞, 佟健, and 胡晓宁, "由丁二烯合成己二腈及己二胺的技术发展现状," (in 簡體中文), 化工進展, vol. 28, no. 5, pp. 832-835, 2009.
[18] Y. L. Knunyants and N. S. Vyazankin, "Hydrodimerization of acrylonitrile," Bulletin of the Academy of Sciences of the USSR, Division of chemical science, journal article vol. 6, no. 2, pp. 253-256, February 01 1957.
[19] M. M. Baizer, "Electrolytic Reductive Coupling I. Acrylonitrile," Journal of The Electrochemical Society, vol. 111, no. 2, pp. 215-222, 1964.
[20] Baizer, Manuel M., et al. "Adiponitrile process." U.S. Patent No. 3,193,480. 6 Jul. 1965.
[21] F. Beck, "Electrosynthesis of adiponitrile in undivided cells," Journal of Applied Electrochemistry, journal article vol. 2, no. 1, pp. 59-69, 1972.
[22] Nakagawa, Koji, and Yukito Nagamori. "Method for producing adiponitrile." U.S. Patent No. 4,789,442. 6 Dec. 1988.
[23] 施金昌, "丙烯腈电解二聚生产己二腈," 合成纤维工业, vol. 1, pp. 53-56, 1986.
[24] F. Karimi, F. Mohammadi, and S. N. Ashrafizadeh, "An Experimental Study of the Competing Cathodic Reactions in Electrohydrodimerization of Acrylonitrile," Journal of the Electrochemical Society, vol. 158, no. 12, pp. E129-E135, 2011.
[25] K. Scott and B. Hayati, "The influence of mass transfer on the electrochemical synthesis of adiponitrile," Chemical Engineering and Processing: Process Intensification, vol. 32, no. 4, pp. 253-260, 1993.
[26] S. N. Bhadani, Q. Ansari, and S. K. S. Gupta, "Electrochemical polymerization of acrylonitrile with quaternary salts," Journal of applied polymer science, vol. 44, no. 1, pp. 121-126, 1992.
[27] K. Scott, I. McConvey, and J. Henderson, "Selectivity characteristics of the electrohydrodimerization of acrylonitrile," Journal of Applied Electrochemistry, vol. 17, no. 2, pp. 329-339, 1987.
[28] A. N. Haines, I. F. McConvey, and K. Scott, "An interpretation of kinetics in the electrohydrodimerization of acrylonitrile to adiponitrile," Electrochimica Acta, vol. 30, no. 3, pp. 291-300, 1985.
[29] C. Costentin and J.-M. Savéant, "Dimerization of electrochemically generated ion radicals: mechanisms and reactivity factors," Journal of Electroanalytical Chemistry, vol. 564, pp. 99-113, 2004.
[30] Badham, John Wilkinson. "Adiponitrile process." U.S. Patent No. 3,529,011. 15 Sep. 1970.
[31] F. Beck, "Cathodic Dimerization," Angewandte Chemie International Edition in English, vol. 11, no. 9, pp. 760-781, 1972.
[32] K. Scott, B. Hayati, A. N. Haines, and I. F. McConvey, "A reaction model for the electrochemical synthesis of adipontrile," Chemical Engineering & Technology, vol. 13, no. 1, pp. 376-383, 1990.
[33] 于颖轩 and 张新胜, "影响无隔膜电解法制备己二腈的因素," 上海市化学化工学会 2006 年度学术年会论文摘要集, 2006.
[34] 顏子謙, "己二腈之電化學合成研究," National Taiwan University Graduate Institute of chemical Engineering, 1998.
[35] B. Tae, J. Lee, and Y. Park, "A study on synthesis of adiponitrile by electrohydrodimerization," J. Korean Ind. Eng. Chem, vol. 6, pp. 834-841, 1995.
[36] F. Karimi, S. N. Ashrafizadeh, and F. Mohammadi, "Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsion-type catholyte," Chemical Engineering Journal, vol. 183, pp. 402-407, 2012.
[37] 于穎軒, "丙烯腈電解制備己二腈的研究," 華東理工大學, 2007.
[38] W. Xia, A. Mahmood, Z. Liang, R. Zou, and S. Guo, "Earth-Abundant Nanomaterials for Oxygen Reduction," Angewandte Chemie International Edition, vol. 55, no. 8, pp. 2650-2676, 2016.
[39] D. C. Grahame, "The electrical double layer and the theory of electrocapillarity," Chemical reviews, vol. 41, no. 3, pp. 441-501, 1947.
[40] D. L. Chapman, "LI. A contribution to the theory of electrocapillarity," The London, Edinburgh, and Dublin philosophical magazine and journal of science, vol. 25, no. 148, pp. 475-481, 1913.
[41] O. Stern, "Zur theorie der elektrolytischen doppelschicht," Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol. 30, no. 21‐22, pp. 508-516, 1924.
[42] L. Pilon, H. Wang, and A. d’Entremont, "Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors," Journal of The Electrochemical Society, vol. 162, no. 5, pp. A5158-A5178, 2015.
[43] J. Newman and K. E. Thomas-Alyea, Electrochemical systems. John Wiley & Sons, 2012.
[44] T. Pérez and J. L. Nava, "Simulation of turbulent flow of a rotating cylinder electrode. Influence of using plates and concentric cylinder as counter electrodes," Int. J. Electrochem. Sci, vol. 8, pp. 4690-4699, 2013.
[45] C. Shen, A. Afacan, J. Luo, and S. J. Klimas, "Mass transfer of dissolved oxygen using rotating cylinder electrode under bulk boiling conditions," International Journal of Heat and Mass Transfer, vol. 70, pp. 162-168, 2014.
[46] J. P. Fornés, G. A. González, and J. M. Bisang, "Electrochemical conversion of sulfur dioxide with a rotating cylinder electrode working as anode or cathode," Journal of Chemical Technology & Biotechnology, vol. 91, no. 1, pp. 219-225, 2016.
[47] D. L. Pavia, G. S. Kriz, and G. M. Lampman, Introduction to Organic Laboratory Techniques: a microscale approach. Saunders college publishing New York, pp. 589-590, 1999.
[48] R. D. Braun and R. Braun, Introduction to instrumental analysis. McGraw-Hill New York, pp. 147-148, 1987.
[49] E. E. Abd El Aal, "Cyclic voltammetric behavior of the lead electrode in sodium sulfate solutions," Journal of Power Sources, vol. 102, no. 1, pp. 233-241, 2001.
[50] J. B. Hayter and R. J. Hunter, "Adsorption of quaternary ammonium ions at the mercury-solution interface: Part I. The integral capacity and the structure of the adsorbed film," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 37, no. 1, pp. 71-80, 1972.
[51] M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solution," NACE, vol. 307, pp. 489,1974.
[52] 金玲, 张新胜, 钮东方, and 袁渭康, "季铵盐添加剂对草酸还原反应的影响," 精细石油化工, vol. 30, no. 5, pp. 54-59, 2013.
[53] C. M. Starks and M. Halper, Phase-transfer catalysis: fundamentals, applications, and industrial perspectives. Springer Science & Business Media, pp. 261-263, 2012.
[54] 陳芳毅, "己二腈電解合成中四級銨鹽特性之研究," 國立成功大學碩士論文, 2018.
[55] Jackson, John David. "Classical electrodynamics." , pp. 841-842, 1999.
校內:2024-08-15公開