| 研究生: |
張夆名 Chang, Feng-Ming |
|---|---|
| 論文名稱: |
氧化效應對鋼放射率行為之影響與多光譜輻射測溫法放射率模型之研究 Oxidation Effect on Steel Emissivity Behaviors and Examination of Multispectral Radiation Thermometry Emissivity Models |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 鋼 、放射率 、氧化效應 、溫度預測 、多光譜輻射測溫法 |
| 外文關鍵詞: | Steel, Emissivity, Oxidation effect, Temperature determination, Multispectral radiation thermometry |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將透過實驗探討氧化效應對鋼放射率的影響,分別比較在真空環境和大氣環境下六種不同鋼材(AISI 420、AISI 630、AISI A2、AISI A6、AISI H2、AISI H10)在加熱溫度700 K、800 K與900 K時的放射率行為,並應用多光譜輻射測溫法搭配六種放射率模型預測表面溫度,以了解氧化效應對溫度預測的影響,並且找出最佳的放射率模型。
放射率的分析上:(1) 無論試件有無氧化,放射率大致上隨波長的增加而遞減;(2) 無氧化試件之放射率大致都隨溫度提升而增加,而有氧化試件之放射率則無此趨勢;(3) 無論試件有無氧化,鋼材的鉻金屬元素含量越高在高溫時有較低的放射率值。(4) 無氧化試件之放射率不隨加熱時間的增加而有太大改變;有氧化試件之放射率則因為氧化層隨著加熱時間增長而變動。
對推測溫度而言,(1) 無論試件有無氧化,對於使用MRT時放射率模型的選擇上,WLT與IWS皆很理想,平均溫度誤差百分比在5 %以內,表示MRT用於鋼材上有不錯的預測溫度效果。(2) 使用MRT推測溫度,增加波長數並無改善溫度誤差,故使用最小波長數即可,並且可以減少計算的時間。(3)當推測的放射率越接近真實的放射率,其預測溫度勢必越準確。
In this study, experiments were conducted to examine the effect of surface oxidation on emissivity behavior. The spectral emissivity were measured under a high-vacuum heater system for six different steel (AISI 420、AISI 630、AISI A2、AISI A6、AISI H2、AISI H10) at three temperatures (700 K、800 K、900 K) and compared with the data under an open air heater system. Six emissivity models were used to examine the MRT for steel in order to understand the effect of surface oxidation on temperature determination and find the best MRT emissivity model.
For steel emissivity behaviors, (1) Emissivity decreases with increasing wavelength whether steel is oxidized or not. (2) Emissivity increases with increasing temperature for oxidized samples, but emissivity doesn’t have the same behavior for unoxidized samples. (3) Steel with high chromium has low emissivity at high temperature. (4) Emissivity of unoxidized sample doesn’t change obviously with time. However, emissivity of oxidized sample changes due to the growing oxide layer with time.
For the examination of MRT emissivity models on steel, (1) WLT and IWS emissivity models show the best overall stability and accuracy whether steel is oxidized or not, and the percentage of average inferred temperature error is under 5%. Therefore, MRT is suitable and applicable for steel temperature determination. (2) Increasing number of wavelengths doesn’t improve inferred accuracy while applying MRT. Therefore, it is sufficient to employ the required minimum number of wavelengths to reduce the time on computation. (3)The closer the inferred emissivity value ane real one, the more the accurate inferred temperature.
1. DeWitt, D. P., “Introduction to Radiation Thermometry,” Proceedings of the Aluminum Association Workshop on Sensors, pp. 19-39, Atlanta, May 1986.
2. Doloresco, B. K., “Review of Multispectral Radiation Thermometry and Development of Constrained Minimization Method,” M. S. Thesis, Purdue University, school of Mechanical Engineering, West Lafayette, Dec 1986.
3. Meriaudeau, F., Renier, E. and Truchetet, F., “Temperature Imaging and Image Processing in the Steel Industry,” Optical Engineering, Vol. 35, No. 12, pp. 3470-3481, 1996.
4. Meriaudeau, F., Legrand, A. C. and Gorria, P., “Real Time Multispectral High Temperature Measurement: Application to Control in the Industry,” Proceedings of SPIE-IS&T Electronic Imaging, SPIE, Vol. 5011, pp. 234-242, 2003.
5. Tsai, B. K., Shoemaker, R. L., Dewitt, D. P., Cowans, B. A., Dardas, Z., Delgass, W. N., and Dail, G. J., “Dual-Wavelength Radiation Thermometry: Emissivity Compensation Algorithms,” International Journal of Thermophysics, Vol. 11(1), pp. 269-281, 1990.
6. Duvaut, Th., Georgeault, D., Beaudoin, J. L., “Multiwavelength Infrared Pyrometry: Optimization and Computer Simulations,” Infrared Physics and Technology, Vol. 36, pp. 1089-1103, 1995.
7. Wen, C., and Mudawar, I., “Experimental Investigation of Emissivity of Aluminum Alloys and Temperature Determination Using Multispectral Radiation Thermometry (MRT) Algorithms,” Journal of Materials Engineering and Performance, Vol. 11, pp. 551-562, 2002.
8. Wen, C., and Mudawar, I., “Emissivity Characteristics of Roughened Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivity models,” International Communications in Heat and Mass Transfer, Vol. 47, pp. 3591-3605, 2005.
9. Wen, C., and Mudawar, I., “Emissivity Characteristics of Polished Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivity models,” International Communications in Heat and Mass Transfer, Vol. 48, pp. 1316-1329, 2005.
10. Wen, C., “Emissivity Characteristics of Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models,” PhD Thesis, Purdue University, school of Mechanical Engineering, August 2005.
11. Wen, C., and Mudawar, I., “Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys,” International Communications in Heat and Mass Transfer, Vol.49, pp. 4279-4289, 2006.
12. Wen, C., and Mudawar, I., “Mathematical Determination of Emissivity and Surface Temperature of Aluminum Alloys using Multispectral Radiation Thermometry,” International Communications in Heat and Mass Transfer, Vol. 33, pp. 1063-1070, 2006.
13. Pellerin, M. A., “Multispectral Radiation Thermometry for Industrial Application,” PhD Thesis, Purdue University, school of Mechanical Engineering, Dec 1999.
14. Touloukian, Y. S. and DeWitt, D.P., “Thermal Radiative Properties, Metallic Elements and Alloys,” Thermophysical Properties of Matter, Vol. 7, Plenum Corp., New York. 1970.
15. Peacock, G. R., “A Review of Non-contact Process Temperature Measurement in Steel Manufacturing,” Part of the SPIE Conference on Thermosense XXI, pp. 171-189, April 1999.
16. Pellerin, M. A., “Multispectral Radiation Thermometry: Emissivity Compensation Algorithm,” M.S. Thesis, Purdue University, school of Mechanical Engineering, 1990.
17. Haugh M. J., “Radiation Thermometry in the Aluminum Industry,” Theory and Practice of Radiation Thermometry, D. P. DeWitt and G. D. Nutter, ed., John Wiley and Sons, New York, pp. 905-971, 1988.
18. Kanayama, K., Apparent Directional Emittance of V-Groove and Circular-Groove Rough Surface, Heat Transfer Japn. Res. 1, 11, 1972.
19. Campo, L. D., Pérez-Sáez, R. B., Tello, M. J., “Iron Oxidation Kinetics Study by using Infrared Spectral Emissivity Measurements below570℃,’’ Corrosion Science, Vol. 50, pp. 194-199, 2008.
20. Gardner, J. L., Jones, T. P. and Davies, M. R., “A Six-Wavelength Radiation Pyrometer,” High Temperature-High Pressures, Vol. 13, pp. 459-466, 1981.
21. Modest, M. F., “Radiative Heat Transfer,” 2nd ed, Academic Press, pp. 75-79, 2003.
22. Dail, G. J., Fuhrman, M. G. and DeWitt, D. P., “Evaluation and Extension of the Spectral-Ratio Radiation Thermometry Method,” Proceedings 4th Int. Aluminum Extrusion Technology Seminar, Chicago, IL, Vol. 2, pp. 209-213, 1988.
23. 呂建財, “鋼材放射特徵研究與多光譜輻射測溫法之應用,” 碩士論文,國立成功大學機械系, 2007.
24. Otsuka, A., Hosono, K., Tanaka, R., Kitagawa, K. and Arai, N., “A Survey of Hemispherical Total Emissivity of the Refractory Metals in Practical Use,” Energy, Vol. 30, pp. 535-543, 2005.
25. Bauer, W., Oertel, H., and Rink, M., “Spectral Emissivities of Bright and Oxidized Metals at High Temperature,”Fifteenth Symposium on Thermophysical Properties, June 22-27 2003.
26. Campo, L. D., Pérez-Sáez, R. B., Esquisabel, X., Fernández, I. and Tello, M. J., “New Experimental Device For Infrared Spectral Directional Emissivity Measurements In a Controlled Environment,” Review of Scientific Instruments, Vol. 77, 2006.
27. Haugh, M. J., “Infrared Thermometry for Low Emissivity Metals,” ISA Transactions, Vol. 22, No. 3, pp. 27-31, 1983.
28. Ishii, J. and Ono, A., “Uncertainty Estimation For Emissivity Measurements Near Room Temperature With a Fourier Transform Spectrometer,” Measurement Science and Technology, Vol. 12, pp. 2103-2112, 2001.
29. Incropera F. P. and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer,” 5th ed, John Wiley and Sons, New York, pp. 700-756, 2002.
30. Ji, J., Gore, J. P., Sivathanu, Y. R. and Lim, J., “Fast Infrared Array Spectrometer used for Radiation Measurements of Lean Premixed Flames,” Proceedings of NHTC'00, 34th National Heat Transfer Conference, Pittsburgh, PA, pp. 1-6, 2000.
31. Pantsar, H. and Kujanpää, V., “Effect of Oxide Layer Growth on Diode Laser Beam Transformation Hardening of Steels,” Surface & Coatings Technology, Vol. 200, pp. 2627-2633, 2006.
32. Tohru Iuchi, Tohru Furukawa, and Shigenobu Wada. “Emissivity Modeling of Metals During the Growth of Oxide Film and Comparison of the Model with Experimental Results”
33. 池逸華, “鋼材放射率行為之實驗研究與線性及對數線性放射率模組在多光譜輻射 測溫法之應用,”碩士論文,國立成功大學機械系, 2007.
34. 蔡宗原, “應用線性與對數線性放射率模組於多光譜輻射測溫法預測鋁合金表面溫度之研究,” 碩士論文,國立成功大學機械系, 2008.
35. 謝宗霖, “多光譜輻射測溫法放射率模組對預測鋁合金表面溫度的合宜性,” 碩士論文,國立成功大學機械系, 2008.
36. 翁亢賢, “氧化效應對多光譜輻射測溫法預測鋁合金表面溫度的影響,” 碩士論文,國立成功大學機械系, 2009.
37. 朱旻峙, “鋁合金於真空腔體內之放射率行為實驗研究,” 碩士論文,國立成功大學機械系, 2009.