簡易檢索 / 詳目顯示

研究生: 高嘉偉
Kao, Chia-Wei
論文名稱: 探討果蠅中胚層發育過程中轉錄因子Zfh1的下游基因
Identify downstream target genes of the transcription factor Zfh1 during Drosophila mesoderm development
指導教授: 劉雅心
Liu, Ya-Hsin
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 43
中文關鍵詞: 果蠅中胚層zfh1基因表現
外文關鍵詞: drosophila melanogaster, mesoderm, zfh1, gene expressio
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發育的過程中不同的基因表現導致細胞分化成不同功能的組織或器官,其中轉錄調控扮演著一個重要的角色。zfh1基因的蛋白質產物是一個轉錄抑制子,zfh1基因突變的果蠅胚胎中許多由中胚層發育而來的組織都產生缺陷,但目前還不清楚zfh1所調控的下游基因有哪些。為了找出zfh1的下游基因,實驗室先前用DNA 微陣列的方法測量了zfh1突變時胚胎的基因表現變化。我挑選了14個胚胎時期表現在中胚層的基因出來以計量即時聚合酶鏈鎖反應 (qPCR) 的方式驗證DNA微陣列的實驗結果。qPCR實驗結果顯示在DNA微陣列實驗中表現量上升的5個基因當中有3個基因表現量上升;在DNA微陣列實驗中表現量不變的3個基因當中有2個基因表現量不變;而在DNA微陣列實驗中表現量下降的6個基因當中僅有2個基因表現量減少。另外利用實驗室先前用染色質免疫沉澱定序 (ChIP-seq) 找到Zfh1在基因體中的結合位點,我參考 Berkeley Drosophila Genome Project (BDGP) 基因表現資料庫挑選表現在中胚層並且Zfh1會結合在附近的9個基因並用原位雜合的方式觀察其內源性表現,結果發現這9個基因都會表現在中胚層衍生的組織,例如:肌肉系統、脂肪體等等。合併qPCR與原位雜合結果顯示,與zfh1表現在相同中胚層組織且在zfh1突變胚胎中基因表現量產生變化的基因即可能是Zfh1的下游基因但無法得知是Zfh1是直接調控或間接調控這些基因。

    Differential gene expression drives the differentiation of cells during development, and transcriptional regulation plays an important role. Zfh1, a transcriptional repressor, displays mutant phenotypes in a variety of mesoderm-derived tissues. However, what genes are regulated by Zfh1 is still not clear. In order to identify downstream target genes of Zfh1, our lab previously profiled changes of gene expression levels in zfh12 mutant embryos by microarray experiments. I selected 14 genes with characterized expression in mesoderm-derived tissues and used quantitative real-time PCR (qPCR) to verify expression levels of these genes in zfh12 mutants. I found that 3 out of the 5 genes that have been shown to be upregulated in zfh12 expression profile also show increased expression levels in qPCR experiments, and 2 of the 3 genes with constant expression in microarray experiments are consistent with the results of qPCR, and 2 of the 6 genes that are downregulated in zfh12 expression profile have decreased expression in qPCR. In addition, our lab used the chromatin immunoprecipitation-sequencing (ChIP-seq) to find the binding region of Zfh1 in the genome. I referred to the BDGP gene expression database select 9 genes which are expressed in the mesoderm and bound by Zfh1, and used in situ hybridization to observe their endogenous expression. The results show that these 9 genes all expressed in mesoderm-derived tissues such as muscles and fat body. The results from qPCR combined with in situ hybridization showed that genes showing the same expression pattern with zfh1 and gene expression levels changed in zfh1 mutant embryos might be the downstream gene of Zfh1. But it is not known that these genes are directly or indirectly regulated by Zfh1.

    摘要(I) 英文延伸摘要(II) 目錄(1) 圖目錄(3) 前言(4) 果蠅胚層發育(4) 中胚層形成與分化(4) zfh1基因在果蠅中胚層發育中的功能(8) 材料與方法(10) 實驗材料(10) 實驗藥品(10) 試劑組(10) 實驗方法(11) 利用計量即時聚合酶鏈鎖反應驗證zfh1基因突變對下游基因之影響(11) 收胚胎發育階段10-11 zfh12/zfh12 基因型果蠅胚胎(11) 萃取胚胎發育階段10-11果蠅胚胎RNA(11) DNase去除DNA(11) 將RNA轉成cDNA(12) qPCR驗證zfh1基因突變對所選基因之影響(12) 利用原位雜合反應觀察所選基因的表現(13) RNA探針的製備(13) 原位雜合反應(14) 結果與討論(15) 利用qPCR驗證zfh12基因表現圖譜(15) 觀察所選基因內源性表現(17) 結論(23) 參考文獻(24)

    Alvarez, A.D., Shi, W., Wilson, B.A., Skeath, J.B. (2003). Pannier and pointedP2 act sequentially to regulate Drosophila heart development.
    Development 130(13): 3015—3026.
    Azpiazu, N., Lawrence, P.A., Vincent, J.P., Frasch, M. (1996). Segmentation and specification of the Drosophila mesoderm. Genes Dev. 10(24): 3183--3194.
    Azpiazu N and Frasch M (1993). Tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 7(7B):1325-40.
    A. VanHook and A. Letsou (2008). Head Involution in Drosophila: Genetic and Morphogenetic Connections to Dorsal Closure Development Dynamics 237:28-38
    Bodmer R (1993). The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118(3):719-29.
    Broihier, H.T., Moore, L.A., Van Doren, M., Newman, S., Lehmann, R. (1998). Zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development 125(4): 655-666.
    Castanon, I., Von Stetina, S., Kass, J., Baylies, M.K. (2001). Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. Development 128(16): 3145-3159.
    Cripps, R.M., Olson, E.N. (2002). Control of cardiac development by an evolutionarily conserved transcriptional network. Dev. Biol. 246(1): 14-28.
    David Casso, Felipe-Andrés Ramírez-Weber, Thomas B. Kornberg (1999). GFP-tagged balancer chromosomes for Drosophila melanogaster. Mechanisms of Development 88:229-232.
    DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA and Trent JM (1996). Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nature Genet. 14: 457-460
    Deshpande, G., Willis, E., Chatterjee, S., Fernandez, R., Dias, K., Schedl, P. (2014). BMP Signaling and the Maintenance of Primordial Germ Cell Identity in Drosophila Embryos. PLoS ONE 9(2): e88847.
    Dobi, K.C., Halfon, M.S., Baylies, M.K. (2014). Whole-Genome Analysis of Muscle Founder Cells Implicates the Chromatin Regulator Sin3A in Muscle Identity. Cell Rep. 8(3): 858—870.
    Dutta, D., Shaw, S., Maqbool, T., Pandya, H., Vijayraghavan, K. (2005). Drosophila Heartless acts with Heartbroken/Dof in muscle founder differentiation. PLoS Biol. 3(10): e337.
    Frandsen, J.L., Gunn, B., Muratoglu, S., Fossett, N., Newfeld, S.J. (2008). Salmonella pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune responses in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 105(39): 14952-14957.
    Hayes, S.A., Miller, J.M., Hoshizaki, D.K. (2001). Serpent, a GATA-like transcription factor gene, induces fat-cell development in Drosophila melanogaster.
    Development 128(7): 1193-1200.
    Iliadi, K.G., Avivi, A., Iliadi, N.N., Knight, D., Korol, A.B., Nevo, E., Taylor, P., Moran, M.F., Kamyshev, N.G., Boulianne, G.L. (2008). Nemy encodes a cytochrome b561 that is required for Drosophila learning and memory. Proc. Natl. Acad. Sci. U.S.A. 105(50): 19986-19991.
    Jaramillo, M.S., Lovato, C.V., Baca, E.M., Cripps, R.M. (2009). Crossveinless and the TGF{beta} pathway regulate fiber number in the Drosophila adult jump muscle. Development 136(7): 1105-1113.
    Jeanine S. Morey, James C. Ryan, and Frances M. Van Dolah (2006). Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online. 8: 175-193.
    J. Pispa, I. Thesleff (2003). Mechanisms of ectodermal organogenesis Developmental Biology 262:195-205.
    Knight, D., Iliadi, K.G., Iliadi, N., Wilk, R., Hu, J., Krause, H.M., Taylor, P., Moran, M.F., Boulianne, G.L. (2015). Distinct Regulation of Transmitter Release at the Drosophila NMJ by Different Isoforms of nemy. PLoS ONE 10(8): e0132548.
    Lai, Z.C., Fortini, M.E., Rubin, G.M. (1991). The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mech. Dev. (34): 123-134.
    Lai, Z.C., Rusthon, E., Bate, M., Rubin, G.M. (1993). Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proc. Natl. Acad. Sci. U.S.A. 90(9): 4122-4126.
    Lilly B, Galewsky S, Firulli AB, Schulz RA, Olson EN. (1994). D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis. Proc Natl Acad Sci 91(12): 5662-5666.
    Lockwood WK, Bodmer R (2002). The patterns of wingless, decapentaplegic, and tinman position the Drosophila heart. Mech Dev 114 (1-2):13-26.
    Lovato TL, Nguyen TP, Molina MR, Cripps RM (2002). The Hox gene abdominal-A specifies heart cell fate in the Drosophila dorsal vessel. Development 129(21):5019-27.
    M. Bate, A. Arias (1993). The Development of Drosophila melanogaster Cold Spring Harbor Laboratory Press
    M. Bate (1990). The embryonic development of larval muscles in Drosophila. Development 110. 791-804
    M. Baylies, M. Bate, (1996). Twist: A myogenic switch in Drosophila. Science 272(5267): 1481-1484.
    M. Leptin (1991). Twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev 5(9):1568-76.
    M.R. Speicher, S.E. Antonarakis, A.G. Motulsky (2009). Vogel and Motulsky's Human Genetics. Problems and Approaches 4th edition p. 422.
    Moore, L.A., Broihier, H.T., Van Doren, M., Lunsford, L.B., Lehmann, R. (1998). Identification of genes controlling germ cell migration and embryonic gonad formation in Drosophila. Development 125(4): 667-678.
    Noriko Wakabayashi-Ito and Y. Tony Ip (2006). Mesoderm Formation in the Drosophila Embryo Muscle Development in Drosophila p. 28-37.
    Parsons, B., Foley, E. (2016). Cellular immune defenses of Drosophila melanogaster. Dev. Comp. Immunol. (58): 95-101.
    Postigo AA, Ward E, Skeath JB, Dean DC (1999). Zfh-1, the Drosophila homologue of ZEB, is a transcriptional repressor that regulates somatic myogenesis. Mol Cell Biol. (10):7255-63.
    Riechmann, V., Rehorn, K.P., Reuter, R., Leptin, M. (1998). The genetic control of the distinction between fat body and gonadal mesoderm in Drosophila. Development 125(4): 713-723.
    Riesgo-Escovar, J.R., Hafen, E. (1997). Drosophila Jun kinase regulates expression of decapentaplegic via the ETS-domain protein Aop and the AP-1 transcription factor DJun during dorsal closure. Genes Dev. 11(13): 1717-1727.
    Sellin, J., Albrecht, S., Koelsch, V., Paululat, A. (2006). Dynamics of heart differentiation, visualized utilizing heart enhancer elements of the Drosophila melanogaster bHLH transcription factor Hand. Gene Expr. Patterns 6(4): 360-375.
    Sivachenko, A., Gordon, H.B., Kimball, S.S., Gavin, E.J., Bonkowsky, J.L., Letsou, A. (2016). Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases. Dis. Model Mech. 9(4): 377-387.
    Szuperák, M., Salah, S., Meyer, E.J., Nagarajan, U., Ikmi, A., Gibson, M.C. (2011). Feedback regulation of Drosophila BMP signaling by the novel extracellular protein Larval Translucida. Development 138(4): 715-724.
    Tripathy, R., Kunwar, P.S., Sano, H., Renault, A.D. (2014). Transcriptional regulation of Drosophila gonad formation. Dev. Biol. 392(2): 193-208.
    Weyers, J.J., Milutinovich, A.B., Takeda, Y., Jemc, J.C., Van Doren, M. (2011). A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway. Dev. Biol. 353(2): 217-228.
    Yin, Z., Xu, X.L., Frasch, M. (1997). Regulation of the twist target gene tinman by modular cis-regulatory elements during early mesoderm development. Development 124(24): 4971-4982.
    Zettervall, C.J., Anderl, I., Williams, M.J., Palmer, R., Kurucz, E., Ando, I., Hultmark, D. (2004). A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. U.S.A. 101(39): 14192-14197.
    Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EE (2009). Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462(7269):65-70. doi: 10.1038/nature08531
    Zheng, H., Yang, X., Xi, Y. (2016). Fat body remodeling and homeostasis control in Drosophila. Life Sci. (167): 22-31.
    Zuberova, M., Fenckova, M., Simek, P., Janeckova, L., Dolezal, T. (2010). Increased extracellular adenosine in Drosophila that are deficient in adenosine deaminase activates a release of energy stores leading to wasting and death. Dis. Model Mech. 3(11-12): 773-784.

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE