| 研究生: |
洪清宏 Hong, Ching-Hong |
|---|---|
| 論文名稱: |
台灣北部大屯火山溫泉之硫同位素分布特性 The distribution of dissolved sulfur isotopes in the hot springs from Tatun Volcanic Group , northern Taiwan |
| 指導教授: |
游鎮烽
You, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 大屯火山溫泉 、硫同位素 、二次酸化 、水岩反應 |
| 外文關鍵詞: | S isotope, Tatun Volcanic Group, Double acidification, Water/rock interaction |
| 相關次數: | 點閱:84 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大屯火山群是一座位於北台灣的活火山,火山活動造就大屯火山含有豐富的溫泉資源,硫為溫泉中含量最為豐富的元素之一。在熱液上升過程中因為水岩反應產生顯著同位素分化,其同位素比值能夠作為熱液流體的來源及傳輸路徑的指標。為區分不同溫泉中熱液系統的來源,本研究分析溫泉硫酸鹽的硫同位素組成,並綜合前人研究之其他同位素資料,探討該區域熱液的來源及硫同位素的分化現象。本研究的樣本,在大屯火山溫泉地區共有八處,其中以大埔溫泉離海最近,地熱谷溫泉則距海最遠。樣品分別以感應耦合電漿光譜儀(ICP-OES)與感應耦合電漿質譜儀(ICP-MS)測定其主要元素和微量元素濃度;使用陰離子交換樹脂純化溫泉水之硫酸鹽,最後利用多接收器感應耦合電漿質譜儀(MC-ICP-MS)進行硫同位素分析。結果顯示,大屯火山群之溫泉水的δ34S落在-3.9‰至+29.1‰。大埔溫泉與地熱谷溫泉的δ34S分別為+29.1‰與+26.0‰,具有非常重的δ34S比值,而四磺坪則是-3.9‰有相對輕的硫同位素比值。其中大埔溫泉的Na離子濃度相對於地熱谷溫泉來得高且該地點接近沿海,認為有海水來源的注入。根據硫酸根離子與碳酸鈣離子濃度,將該區域的溫泉水分為酸性硫酸鹽泉與中性碳酸鹽泉並藉由piper diagram圖將溫泉性質分為第一型為鈣鎂含量較高的酸性硫酸鹽泉(七股、四磺坪、八煙),第二型為鈣鎂含量較高的碳酸鹽硫酸鹽泉(冷水坑、湖山),第三型為鈉含量較高的硫酸鹽氯化物泉(地熱谷、大埔)、第四型為鈣鎂含量較高的硫酸鹽氯化物泉(大油坑)。δ34S值顯示各溫泉硫酸鹽的來源,藉由δ34S與B/Cl比值的變化,探討熱液系統與岩漿揮發物來源,並依照比例分為岩漿氣體、火山風化以及雨水來源。四磺坪的δ34S為-3.9‰,且B/Cl比較低,認為大屯火山溫泉有二次酸化生成的可能性,導致四磺坪的δ34S較輕。
The Tatun Volcanic Group (TVG) in Taiwan is an active volcano, its volcanic activity has made many kind of resources in TVG including hot springs. Sulfur is one of the most abundant elements in hot springs. 34S (one of the S isotopes) will be affected by water/rock interaction in the hydrothermal system. δ34S can be used to distinguish different sources from a hydrothermal system. To understand the underground storage layer of TVG, this study aims to collected hot springs from the hydrothermal system at eight hot springs (TRK, HS, LSK, CG, DYK, SHP, BY,DP) in TVG, composed mainly andesites with minor sedimentary rock (Wuzhishan Formation) under the igneous rocks.
This study investigates chemical compositions and S isotopes in different hot springs to explore their possible sources of waters applying potential different S isotopes fractionation associated. Major and trace elements were analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometry (ICP-MS). After pretreatment, the samples were purified in a clean room and analyzed for S isotope composition by Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS).
The preliminary results show Sulfur isotopes fall in the range of -3.9‰ to +30.1‰ in the TVG. In addition to δ34S, we further discuss the correlation between the ratio of B/Cl and δ34S, three groups of TVG hot springs were classified, including magmatic gas (DYK), and volcanic rocks weathering (TRK, HS, LSK, CG, DP), and rainwater dominated with weak weathering (BY, SHP). However, the trace elements concentration in the sedimentary rock much more than igneous rocks. The S isotope in DYK hot spring is +10.5‰ and fumarole +10.3‰, respectively, both sources show similar isotopic compositions. Most S isotopes in hot springs are much higher than seawater except that of SHP, because they are affected by vapor in Wuzhishan Formation. We suggest a scenario of double acidification reaction in SHP to create such light δ34S.
Aggarwal, J. K., Palmer, M. R., Bullen, T. D., Arnórsson, S., & Ragnarsdóttir, K. V. (2000). The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems. Geochimica et Cosmochimica Acta, 64(4), 579-585.
Allen, E. T., & Day, A. L. (1935). Hot springs of the Yellowstone Park: Carnegie Institution for Science. Washington Pub, 466, 524.
Arnórsson, S., Gunnlaugsson, E., & Svavarsson, H. (1983). The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochimica et Cosmochimica Acta, 47(3), 547-566.
Barkan, Y., Paris, G., Webb, S. M., Adkins, J. F., & Halevy, I. (2020). Sulfur isotope fractionation between aqueous and carbonate-associated sulfate in abiotic calcite and aragonite. Geochimica et Cosmochimica Acta, 280, 317-339.
Chao, H. C., Pi, J. L., You, C. F., Shieh, Y. T., Lu, H. Y., Huang, K. F., Liu, H. C., & Chung, C. H. (2021). Hydrogeology constrained by multi-isotopes and volatiles geochemistry of hot springs in Tatun Volcanic Group, Taiwan. Journal of Hydrology, 600, 126515.
Chen, C. H., & Wu, Y. J. (1971). Volcanic geology of the Tatun geothermal area, northern Taiwan. In Proc. Geological Society. China, 14, 5-20.
Chen, C. H. (1975). Petrological and chemical study of volcanic rocks from Tatun Volcano Group. In Proc. Geological Society. China, 18, 59-72.
Chen, C. H. (1975). Thermal waters in Taiwan, a preliminary study. In Proceedings of the Grenoble Symposium, 119, 79-88.
Cherng, F. P. (1978). Geochemical exploration of hot spring areas in Taiwan. Mining & Metallurgy, 22, 72-83.
Chen, C.H. and Chen, F.P., (1981). Chemical properties of the thermal fluid in the Tatun geothermal system, Taiwan. In Arc Volcanism: Physics and Tectonics. Proceedings of a 1981 IAVCEI Symposium, Arc Volcanism, August-September, 1981, Tokyo and Hakone. Abstracts,49.
Chen, Y. L., Lo, H. J., Yu, C. F., Shen, J. S., Song, S. R., Huang, S. C., ... & Lin, I. C. (1999). Geochemical study of hot springs in the Tatun volcanic area. In Annual Meeting of Geological Society of China, 37-39.
Craig, H., Boato, G. and White, D.E. (1956). Isotopic geochemistry of thermal waters: National Academy of Sciences., 400, 29-38.
Craig, H. (1966). Superheated steam and mineral-water interactions in the geothermal areas: Am. Geophysics. Union Trans., 47, 204-205.
Craig, H. (1969). Source fluids for the Salton Sea geothermal system; discussion. American Journal of Science, 267(2), 249-255.
Das, A., Chung, C. H., You, C. F., & Shen, M. L. (2012). Application of an improved ion exchange technique for the measurement of δ34S values from microgram quantities of sulfur by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 27(12), 2088-2093.
Ding, X., Li, D., Zheng, L., Bao, H., Chen, H. F., & Kao, S. J. (2016). Sulfur geochemistry of a lacustrine record from Taiwan reveals enhanced marine aerosol input during the early Holocene. Scientific reports, 6(1), 1-9.
Edmonds, M., & Wallace, P. J. (2017). Volatiles and exsolved vapor in volcanic systems. Elements, 13(1), 29-34.
Ellis, A. J., & Wilson, S. H. (1961). Hot spring areas with acid–sulphate–chloride waters. Nature, 191(4789), 696-697.
Fenner, C. N. (1936). Bore-hole investigations in Yellowstone Park. The Journal of Geology, 225-315.
Gat, J. R., & Dansgaard, W. (1972). Stable isotope survey of the fresh water occurrences in Israel and the northern Jordan Rift Valley. Journal of Hydrology, 16(3), 177-211.
Giggenbach, W. F. (1980). Geothermal gas equilibria. Geochimica et cosmochimica acta, 44(12), 2021-2032.
Giggenbach, W. F. (1992). Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth and planetary science letters, 113(4), 495-510.
Gonfiantini, R. (1986). Environmental isotopes in lake studies. Handbook of environmental isotope geochemistry, 2, 113-168.
Hannington, M. D., de Ronde, C. D., & Petersen, S. (2005). Sea-floor tectonics and submarine hydrothermal systems. Society of Economic Geologists.
Hague, A. (1911). Origin of the thermal waters in the Yellowstone National Park. Bulletin of the Geological Society of America, 22(1), 103-122.
Henley, R. W., & Ellis, A. J. (1983). Geothermal systems ancient and modern: a geochemical review. Earth-science reviews, 19(1), 1-50.
Hirabayashi, J.-I. Yoshida, M., & Ossaka, J. (1990). Chemistry of volcanic gases from the 62–1 Crater of Mt. Tokachi, Hokkaido, Japan Bull. The Volcanological Society of Japan, 35, 205-215.
Ingebritsen, S. E., & Sorey, M. L. (1988). Vapor‐dominated zones within hydrothermal systems: Evolution and natural state. Journal of Geophysical Research: Solid Earth, 93(B11), 13635-13655.
Kamyshny, A., Zilberbrand, M., Ekeltchik, I., Voitsekovski, T., Gun, J., & Lev, O. (2008). Speciation of polysulfides and zerovalent sulfur in sulfide-rich water wells in southern and central Israel. Aquatic Geochemistry, 14(2), 171-192.
Kaasalainen, H., & Stefánsson, A. (2011). Sulfur speciation in natural hydrothermal waters, Iceland. Geochimica et Cosmochimica Acta, 75(10), 2777-2791.
Kiyosu, Y., & Kurahashi, M. (1983). Origin of sulfur species in acid sulfate-chloride thermal waters, northeastern Japan. Geochimica et Cosmochimica Acta, 47(7), 1237-1245.
Lee, H. F., Yang, T. F., Lan, T. F., Sheng-Rong, S., & Tsao, S. (2005). Fumarolic gas composition of the Tatun Volcano Group, northern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 16(4), 843.
Lee, H. F., Yang, T. F., Lan, T. F., Chen, C. H., Song, S. R., & Tsao, S. (2008). Temporal variations of gas compositions of fumaroles in the Tatun Volcano Group, northern Taiwan. Journal of volcanology and geothermal research, 178(4), 624-635.
Lin, C. H. (2016). Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays. Scientific reports, 6(1), 1-9.
Liu, C. M., Song, S. R., Chen, Y. L., & Tsao, S. (2011). Characteristics and Origins of Hot Springs in the Tatun Volcano Group in Northern Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 22(5).
MacNamara, J., & Thode, H. G. (1950). Comparison of the isotopic constitution of terrestrial and meteoritic sulfur. Physical Review, 78(3), 307.
Marini, L., Moretti, R., & Accornero, M. (2011). Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas. Reviews in Mineralogy and Geochemistry, 73(1), 423-492.
Millot, R., Guerrot, C., Petelet-Giraud, E., Brenot, A., & Malcuit, E. (2012). Heterogeneities and interconnections in groundwater: coupled B, Li and stable isotope variations in a large aquifer system (France). Chemical Geology, 296(297), 83-95.
Nicholson, K. (1993). Exploration Techniques. In Geothermal Fluids. Springer, Berlin, Heidelberg, 141-149.
Ohba, T., Sawa, T., Taira, N., Yang, T. F., Lee, H. F., Lan, T. F., Ohwada, M., Morikawa, N & Kazahaya, K. (2010). Magmatic fluids of Tatun volcanic group, Taiwan. Applied Geochemistry, 25(4), 513-523.
Ohmoto, H., and Rye, R.O., (1979). Isotopes of sulfur and carbon in Ohmoto, H., ed., Geochemistry of hydrothermal ore deposits: New York, NY, Wiley, p. 509-567
Palmer, M. R., & Sturchio, N. C. (1990). The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance. Geochimica et Cosmochimica Acta, 54(10), 2811-2815.
Paris, G., Adkins, J. F., Sessions, A. L., Webb, S. M., & Fischer, W. W. (2014). Neoarchean carbonate–associated sulfate records positive Δ33S anomalies. Science, 346(6210), 739-741.
Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations No. 6-A43. United States Geological Survey.
Present, T. M., Gutierrez, M., Paris, G., Kerans, C., Grotzinger, J. P., & Adkins, J. F. (2019). Diagenetic controls on the isotopic composition of carbonate‐associated sulphate in the Permian Capitan Reef Complex, West Texas. Sedimentology, 66(7), 2605-2626.
Pu, H. C., Lin, C. H., Hsu, Y. J., Lai, Y. C., Shih, M. H., Murase, M., & Chang, L. C. (2020). Volcano-hydrothermal inflation revealed through spatial variation in stress field in Tatun Volcano Group, Northern Taiwan. Journal of Volcanology and Geothermal Research, 390, 106712.
Rollinson, H.R., (1993). Using stable isotope data, in Rollinson, H.R., ed., Using geochemical data: evaluation, presentation, interpretation, Longman, p. 303-306.
Rowe Jr, G. L. (1994). Oxygen, hydrogen, and sulfur isotope systematics of the crater lake system of Poas volcano, Costa Rica. Geochemical Journal, 28(3), 263-287.
Schurr, S. L., Genske, F., Strauss, H., & Stracke, A. (2020). A comparison of sulfur isotope measurements of geologic materials by inductively coupled plasma and gas source mass spectrometry. Chemical Geology, 558, 119869.
Seyfried Jr, W. E., Seewald, J. S., Berndt, M. E., Ding, K., & Foustoukos, D. I. (2003). Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events. Journal of Geophysical Research: Solid Earth, 108(B9).
Shanks III, W. C., & Seyfried Jr, W. E. (1987). Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: sodium metasomatism and seawater sulfate reduction. Journal of Geophysical Research: Solid Earth, 92(B11), 11387-11399.
Song, S. R. (2000). The Tatun volcano group is active or extinct?. Jour. Geological Society. China, 43, 521-534.
Symonds, R. B., Mizutani, Y., & Briggs, P. H. (1996). Long-term geochemical surveillance of fumaroles at Showa-Shinzan dome, Usu volcano, Japan. Journal of Volcanology and Geothermal Research, 73(3-4), 177-211.
Szakács, A. (1994). Redefining active volcanoes: a discussion. Bulletin of volcanology, 56(5), 321-325.
Wang, C. H. (1991). The stable isotopic compositions on geothermal waters of the Tatun volcanic area. Taiwan. Tech. Report, Institute of Earth Sciences., Academia Sinica, 36.
Wang, K. L., Chung, S. L., O'REILLY, S. Y., Sun, S. S., Shinjo, R., & Chen, C. H. (2004). Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region. Journal of Petrology, 45(5), 975-1011.
White, D.E. (1957). Magmatic, connate and metamorphic waters: Geological Society. Amer. Bull., 68, 1659-1682.
Williams, S. N., Sturchio, N. C., Mendez, R., Londoño, A., & García, N. (1990). Sulfur dioxide from Nevado del Ruiz volcano, Colombia: total flux and isotopic constraints on its origin. Journal of Volcanology and Geothermal Research, 42(1-2), 53-68.
Xu, Y., Schoonen, M. A. A., Nordstrom, D. K., Cunningham, K. M., & Ball, J. W. (1998). Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters. Geochimica et Cosmochimica Acta, 62(23-24), 3729-3743.
Xu, Y., Schoonen, M. A. A., Nordstrom, D. K., Cunningham, K. M., & Ball, J. W. (2000). Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition of thiosulfate and polythionate in Cinder Pool. Journal of Volcanology and Geothermal Research, 97(1-4), 407-423.
Yang, T. F., Sano, Y., & Song, S. R. (1999). 3He/4He ratios of fumaroles and bubbling gases of hot springs in Tatun Volcano Group, North Taiwan. Il Nuovo Cimento C, 22(3-4), 281-286.
Zellmer, G. F., Rubin, K. H., Miller, C. A., Shellnutt, J. G., Belousov, A., & Belousova, M. (2015). Resolving discordant U–Th–Ra ages: constraints on petrogenetic processes of recent effusive eruptions at Tatun Volcano Group, northern Taiwan. Geological Society, London, Special Publications, 422(1), 175-188.
王文祥(1989)。大屯火山群之火山學及核飛跡定年,國立台灣大學地質學系研究所碩士論文,共154頁。
台灣質譜學會(2015)。質譜分析技術原理與應用。
何孝恆(2001)。台灣北部地區大屯火山群火山噴氣來源之探討,國立台灣大學地質科學研究所碩士論文,共80頁。
何春蓀(1986)。台灣地質概論及台灣地質圖說明書,經濟部中央地質調查所,共164頁。
李曉芬(2004)。大屯火山區火山氣體成份及其冷凝水之氫氧同位素組成,國立臺灣大學地質學研究所,共79頁。
孟昭彝、邵普澤、徐亮明(1965)。大屯火山地熱區初步研究,礦業技術,地熱專刊,104-118頁。
張寶堂(1979)。台灣地熱徵兆分布之特性,能源季刊,第九卷,第4期,75~85頁。
陳艾荻(2010)。台灣溫泉水中溶解氣成分研究,國立臺灣大學地質學研究所,共130頁。
陳耀麟(2002)。大屯火山區溫泉水之化學成份及其對河水之影響, 國立臺灣大學地質科學研究所,共216頁。
陳肇夏(1989)。台灣的溫泉和地熱,地質,第九卷,第2期,327~340頁。
程楓萍(1987)。陽明山國家公園水資源調查與利用規劃及管理,陽明山國家公園管理處,共178頁。
黃鑑水(1998)。台灣地質圖(五萬分之一),圖幅第四號(台北),經濟部中央地質調查所,第二版,共61頁。
鄒惠雯(2011)。台灣北部地區大屯火山群火山噴氣之硫同位素分析,國立台灣大學地質科學所碩士論文,共85頁。
劉康克、俞震甫、謝越寧、江新春(1984)。台北市大屯山地熱區碳氫氧同位素研究,中央研究院地球科學研究所研究報告ASIES-CR8401,共39頁。
顏滄波(1955)。台灣之溫泉,台銀季刊,第七卷,第2期,129-147頁。
黃克剛、陳肇夏、吳永助、鄭文哲、呂理光、李青芳,礦研所(1969)大屯火山群地熱探勘工作報告之一,經濟部聯合礦業研究所,報告90號,共63頁。
黃克剛、陳肇夏、吳永助、鄭文哲、呂理光、李青芳,礦研所(1970)大屯火山群地熱探勘工作報告之二,經濟部聯合礦業研究所,報告102號,共86頁。
黃克剛、陳肇夏、吳永助、鄭文哲、武敏、李青芳,礦研所(1971)大屯火山群地熱探勘工作報告之三,經濟部聯合礦業研究所,報告111號,共48頁。
黃克剛、鄭文哲、武敏、李青芳、程楓萍,礦研所(1973)大屯火山群地熱探勘工作報告之四,經濟部聯合礦業研究所,報告126號,共78頁。