簡易檢索 / 詳目顯示

研究生: 王鈺仁
Wang, Yu-Jen
論文名稱: 啟於孔明鎖的地震超材料設計
Burr puzzle-inspired seismic metamaterials
指導教授: 蘇于琪
Su, Yu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 76
中文關鍵詞: 地震超材料孔明鎖帶隙暫態模擬表面波
外文關鍵詞: Seismic metamaterials, surface waves, burr puzzle, gradient design, bandgap, transient wave simulation
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 i Extended Abstract ii 誌謝 xxvi 目錄 xxvii 表目錄 xxx 圖目錄 xxxi 符號表 xxxiv 第一章 緒論 1 1.1 文獻回顧 1 1.2 論文動機 11 1.3 論文簡介 13 第二章 地震超材料理論架構 14 2.1 聲學超材料 14 2.2地震超材料 16 2.2.1 地震超材料消能機制 16 2.2.2 波傳方程式 18 2.2.3 布洛赫定理 (Bloch theorem) 18 2.2.4 倒晶格 (reciprocal lattice) 19 2.2.5 布里淵區 (Brillouin zone) 20 第三章 設計地震超材料與模擬 23 3.1 模型介紹 23 3.2 頻散分析 25 3.2.1 Sound cone 26 3.2.2 頻散圖與模態 28 3.3 參數分析 31 第四章 利用高斯波包函數探討地震超材料暫態效果 37 4.1 全域暫態模擬設置 37 4.2 高斯波包函數 40 4.3模擬分析討論 44 4.4 排數分析 49 第五章 引入集集大地震歷時探討減震效果 53 5.1 輸入地震歷時 53 5.2 軟體設置與分析 55 5.3 模擬分析討論 55 第六章 結論與未來展望 61 6.1 結論 61 6.2 未來展望 62 附錄A:蘋果與獎盃地震超材料體積計算 64 A.1 獎盃模型體積計算 64 A.2 蘋果模型體積計算 66 附錄B:蘋果與獎盃模型組裝想法 68 B.1 蘋果模型組裝 68 B.2 獎盃模型組裝 70 參考文獻 71

    [1] Meseguer, F., Holgado, M., Caballero, D., Benaches, N., Sanchez-Dehesa, J., López, C., and Llinares, J. (1999). Rayleigh-wave attenuation by a semiinfinite two-dimensional elastic-band-gap crystal. Physical Review B, 59(19), 12169.
    [2] Li, L., Jia, Q., Tong, M., Li, P., and Zhang, X. (2021). Radial seismic metamaterials with ultra-low frequency broadband characteristics. Journal of Physics D: Applied Physics, 54(50), 505104.
    [3] Xu, Y., Xu, R., Peng, P., Yang, H., Zeng, Y., and Du, Q. (2019). Broadband H-shaped seismic metamaterial with a rubber coating. Europhysics Letters, 127(1), 17002.
    [4] Zhang, K., Luo, J., Hong, F., and Deng, Z. (2021). Seismic metamaterials with cross-like and square steel sections for low-frequency wide band gaps. Engineering Structures, 232, 111870.
    [5] Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R. V., Enoch, S., and Guenneau, S. (2017). Clamped seismic metamaterials: ultra-low frequency stop bands. New Journal of Physics, 19(6), 063022.
    [6] Wang, X., Wan, S., Nian, Y., Zhou, P., and Zhu, Y. (2021). Periodic in-filled pipes embedded in semi-infinite space as seismic metamaterials for filtering ultra-low-frequency surface waves. Construction and Building Materials, 313, 125498.
    [7] Du, Q., Zeng, Y., Huang, G., and Yang, H. (2017). Elastic metamaterialbased seismic shield for both Lamb and surface waves. AIP Advances, 7(7), 075015.
    [8] Varma, T. V., Ungureanu, B., Sarkar, S., Craster, R., Guenneau, S., and Brûlé, S. (2021). The influence of clamping, structure geometry, and material on seismic metamaterial performance. Frontiers in Materials, 106.
    [9] Miniaci, M., Kherraz, N., Cröenne, C., Mazzotti, M., Morvaridi, M., Gliozzi, A. S., and Pugno, N. M. (2021). Hierarchical large-scale elastic metamaterials for passive seismic wave mitigation. EPJ Applied Metamaterials, 8, 14.
    [10] Brûlé, S., Javelaud, E. H., Enoch, S., and Guenneau, S. 2014. Experiments on seismic metamaterials: molding surface waves. Physical Review Letters, 112, 133901.
    [11] Krödel, S., Thomé, N., and Daraio, C. 2015. Wide band-gap seismic metastructures. Extreme Mechanics Letters, 4, 111-117.
    [12] Miniaci, M., Krushynska, A., Bosia, F., and Pugno, N.M. 2016. Large scale mechanical metamaterials as seismic shields. New Journal of Physics, 18, 083041.
    [13] Maheshwari, H. K. and Rajagopal, P. (2022). Novel locally resonant and widely scalable seismic metamaterials for broadband mitigation of disturbances in the very low frequency range of 0–33 Hz. Soil Dynamics and Earthquake Engineering, 161, 107409.
    [14] Palermo, A., Krödel, S., Marzani, A., and Daraio, C. (2016). Engineered metabarrier as shield from seismic surface waves. Scientific reports, 6(1), 1-10.
    [15] Casablanca, O., Ventura, G., Garescì, F., Azzerboni, B., Chiaia, B., Chiappini, M., and Finocchio, G. (2018). Seismic isolation of buildings using composite foundations based on metamaterials. Journal of Applied Physics, 123(17), 174903.
    [16] Xu, R., Muzamil, M., Fan, L., Yuan, K., Yang, H., and Du, Q. (2021). Broadband seismic metamaterial with an improved cylinder by introducing plus-shaped structure. Europhysics Letters, 133(3), 37001.
    [17] Ji, D. X. and Yu, G. L. (2022). Shielding performance of T-shaped periodic barrier for surface waves in transversely isotropic soil. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236(11), 2242-2254.
    [18] Zeng, Y., Peng, P., Du, Q. J., Wang, Y. S., and Assouar, B. (2020). Subwavelength seismic metamaterial with an ultra-low frequency bandgap. Journal of Applied Physics, 128(1), 014901.
    [19] Zeng, Y., Zhang, S. Y., Zhou, H. T., Wang, Y. F., Cao, L., Zhu, Y., and Wang, Y. S. (2021). Broadband inverted T-shaped seismic metamaterial. Materials & Design, 208, 109906.
    [20] Colquitt, D. J., Colombi, A., Craster, R. V., Roux, P., and Guenneau, S. R. L. (2017). Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction. Journal of the Mechanics and Physics of Solids, 99, 379-393.
    [21] Colombi, A., Ageeva, V., Smith, R. J., Clare, A., Patel, R., Clark, M., andCraster, R. V. (2017). Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces. Scientific Reports, 7(1), 1-9.
    [22] Colombi, A., Craster, R. V., Colquitt, D., Achaoui, Y., Guenneau, S., Roux, P., and Rupin, M. (2017). Elastic wave control beyond band-gaps: shaping the flow of waves in plates and half-spaces with subwavelength resonant rods. Frontiers in Mechanical Engineering, 3, 10.
    [23] Zeng, Y., Xu, Y., Deng, K., Zeng, Z., Yang, H., Muzamil, M., and Du, Q. (2018). Low-frequency broadband seismic metamaterial using I-shaped pillars in a half-space. Journal of Applied Physics, 123(21), 214901.
    [24] Du, Q., Zeng, Y., Xu, Y., Yang, H., and Zeng, Z. (2018). H-fractal seismic metamaterial with broadband low-frequency bandgaps. Journal of Physics D: Applied Physics, 51(10), 105104.
    [25] A. Colombi, P. Roux, S. Guenneau, P. Gueguen, and R.V. Craster, 2016. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Scientific Reports, Vol. 6, 19238.
    [26] Liu, Y. F., Huang, J. K., Li, Y. G., and Shi, Z. F. (2019). Trees as largescale natural metamaterials for low-frequency vibration reduction. Construction and Building Materials, 199, 737-745.
    [27] Colombi, A., Colquitt, D., Roux, P., Guenneau, S., and Craster, R. V. (2016). A seismic metamaterial: The resonant metawedge. Scientific Reports, 6(1), 1-6.
    [28] Zeng, Y., Xu, Y., Deng, K., Peng, P., Yang, H., Muzamil, M., and Du, Q. (2019). A broadband seismic metamaterial plate with simple structure and easy realization. Journal of Applied Physics, 125(22), 224901.
    [29] Zeng, Y., Cao, L., Wan, S., Guo, T., Wang, Y. F., Du, Q. J., and Wang, Y. S. (2022). Seismic metamaterials: Generating low-frequency bandgaps induced by inertial amplification. International Journal of Mechanical Sciences, 221, 107224.
    [30] Palermo, A. and Marzani, A. (2018). Control of Love waves by resonant metasurfaces. Scientific Reports, 8(1), 1-8.
    [31] Kim, S. H. and Das, M. P. (2012). Seismic waveguide of metamaterials. Modern Physics Letters B, 26(17), 1250105.
    [32] Muhammad, Lim, C. W., and Reddy, J. N. (2019). Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium. Engineering Structures, 188, 440-451.
    [33] Maurel, A., Marigo, J. J., Pham, K., and Guenneau, S. (2018). Conversion of Love waves in a forest of trees. Physical Review B, 98(13), 134311.
    [34] Lou, J., Fang, X., Fan, H., and Du, J. (2022). A nonlinear seismic metamaterial lying on layered soils. Engineering Structures, 272, 115032.
    [35] Su, Y. C. and Wu, C. K. (2022). A snowman-like seismic metamaterial. Journal of Applied Physics, 132(10), 105106.
    [36] Palermo, A., Vitali, M., and Marzani, A. (2018). Metabarriers with multimass locally resonating units for broad band Rayleigh waves attenuation. Soil Dynamics and Earthquake Engineering, 113, 265-277.
    [37] Huang, H. H. and Sun, C. T. (2009). Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics, 11(1), 013003.
    [38] Bragg, W. H. and Bragg, W. L. (1913). The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88(605), 428-438.
    [39] Cheng, Z. B. and Shi, Z. F. (2018). Composite periodic foundation and its application for seismic isolation. Earthquake Engineering & Structural Dynamics, 47(4), 925-944.
    [40] Bloch, F. (1929). Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik, 52(7-8), 555-600.
    [41] Brillouin, L. Wave Propagation in Periodic Structures (Dover Publications, 2003).
    [42] https://en.wikipedia.org/wiki/Wigner%E2%80%93Seitz_cell
    [43] Khelif, A., Achaoui, Y., Benchabane, S., Laude, V. and Aoubiza, B. (2010). Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface. Physical Review B, 81(21), 214303.
    [44] Paes, V. Z. C. and Mosca, D. H. (2013). Magnetostrictive contribution to Poisson ratio of galfenol. Journal of Applied Physics, 114(12), 123915.
    [45] https://www.pitotech.com.tw/contents/en-us/p15406_0323.html
    [46] De Moura, C. A. and Kubrusly, C. S. The courant–friedrichs–lewy (cfl) condition (Birkhauser, 2013).

    無法下載圖示 校內:2026-01-31公開
    校外:2026-01-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE