簡易檢索 / 詳目顯示

研究生: 黎氏桂
THI, QUE LE
論文名稱: 利用雙能階系統探討非旋轉場對躍遷機率的影響
Discussion on transition probability without Rotating Wave Approximation in two level systems
指導教授: 陳家駒
Chia-Chu, Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 50
外文關鍵詞: Jaynes Cummings Model, Rotating Wave Approximation
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Jaynes-Cummings Model (JCM) without Rotating Wave Approximation (RWA) is discussed
    in this thesis by the perturbation theory. The state vector and the probability that the
    system remains in the initial state to the second and the fourth orders of coupling constant
    are found. The probability to the second order of of the system being in the initial state is
    smaller than the RWA result. For n = 0, the probability to the order 2 of the system with
    and without RWA are the same. The probability to 4 have been investigated to justify the
    result. The probability to 4 of the system remaining in the state with and without RWA for
    n = 0, the results are different.

    Acknowledgement . . i Abstract . . . . ii Table of Contents . iii 1 Introduction . . 1 1.1 General background . . 1 1.2 Objective and methodology of this study . . 2 2 Review on perturbation theory and the two level systems . . 3 2.1 The time-dependent perturbation theory . . 3 2.1.1 The interaction picture . . 3 2.1.2 The calculations of the time-dependent perturbation theory . . 5 2.2 The two-level system . . 7 3 Theory of the Jaynes Cummings Model . . 12 3.1 Atom-field interaction . . 12 3.2 Quantization of a single-mode electromagnetic field . .14 3.3 The Jaynes Cummings Model . . 18 3.4 The dynamics of the system . . 21 3.5 The dynamics of the system for  6= 0 by time-dependent perturbation calculation . . 25 3.6 The dressed-state approach . .28 4 The Jaynes -Cummings Model without the rotating wave approximation . . . 34 4.1 Introduction . . 34 4.2 The Jaynes-Cummings model without the Rotating-Wave approximation . . 34 5 Jaynes-Cummings Model: Comparison to the fourth order of coupling constant  43 6 Conclusions . . 49 References . . 50

    1. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89, 1963.
    2. H. I. Yoo and J. H. Eberly. Phys. Rept.118, 239, 1985.
    3. P. K. Aravind and J. O. Hirschfelder, J. Opt. Soc. Am. B2, 228, 1985.
    4. S. Haroche and J. M. Raimond, Adv. Atom. Molec. Phys. 20, 239, 1985.
    5. J. H. Eberly, Phys. Rev. Lett. 44, 1323, 1980.
    6. S. M. Barnett and P. L. Knight, Phys. Rev. A 33, 2444, 1986.
    7. P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer, Berlin, 1991).
    8. P. Meystre and M. S. Zubairy, Phys. Lett. A589, 390, 1982.
    9. X. Y. Huang and J.S. Peng, Physica scripta, T21, 100, 1988.
    10. M. F. Fang and P. Zhou, Journal of Modern Optics, Vol. 42, No. 6, 1995.
    11. P. L. Knight and C. C. Gerry, Introductory Quantum Optics, 74, 2005.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE