簡易檢索 / 詳目顯示

研究生: 林威廷
Lin, Wei-Ting
論文名稱: 以快速溶熱反應法合成單一粒徑Ce:YAG球形單晶之製程參數研究
Synthesis and characterizations of mono-dispersed Ce:YAG spherical single crystals via rapid solvothermal reaction
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 103
中文關鍵詞: 釔鋁石榴石溶熱法單一粒徑螢光
外文關鍵詞: YAG, Solvothermal, Mono-dispersed, Fluorescence, Cerium
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主旨在開發快速合成Ce : YAG粉末的經濟製程,使用硝酸釔、硝酸鋁及硝酸鈰作為起始原料,溶解於醇類溶劑中形成澄清透明溶液,不經滴定、沈澱等其他步驟,直接放入壓力釜中進行溶熱反應。本研究探討使用溶劑種類對於反應速率與產物粒徑、結晶性之間的關連性。研究結果發現,以溶熱法合成YAG粉末的反應速率,與使用醇類溶劑的超臨界溫度以及介電常數有著緊密的關連性。由於溶劑的介電常數在超臨界溫度之上時會急劇下降,使得硝酸鹽濃度瞬間因過飽和而誘發均勻成核成長作用,形成粒徑均一之球形Ce : YAG粉末。由於各種醇類溶劑的介電常數及超臨界溫度各不同,因此整體溶熱反應效率、產物結晶性及粒徑大小均強烈受到溶劑種類的影響。本研究分別選用了五種不同醇類溶劑,透過反應溫度與時間的控制,確認溶劑的超臨界溫度為決定反應速率的主要因素,而產物之結晶性則由溶劑的介電常數主導。以本研究所開發的快速溶熱製程,可在285ºC下反應5小時,即獲得次微米尺度之單一粒徑Ce : YAG單晶粒子,可應用做為白光LED之螢光粉。

    One-pot synthesis process method to prepare cerium doped Y3Al5O12 (Ce:YAG) was via solvothermal method was reported in this work. Staring solution was prepared by using yttrium nitrate, aluminum nitrate and cerium nitrate dissolved in different alcohols solvents and then placed directly into stainless autoclave for the solvothermal reaction. Via a mild working temperature (< 285°C) and efficient reaction time (5h), single-phased, spherical shape and mono-size distributed grain size of Ce:YAG particles were obtained. The effects of the solvent properties, including supercritical point and dielectric constant, on the resulting Ce:YAG products were carefully investigated. The Ce:YAG powders showed a broad emission band in the green-yellow range having maximum intensity at 530 nm under excitation wavelength at 460 nm. This solvothermal synthesis method provides a new and efficient approach for the preparation of YAG powders.

    中文摘要 I Abstract II 致謝 XII 目錄 XIII 圖目錄 XVI 表目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 3 第二章 理論基礎與文獻回顧 4 2.1 YAG簡介 4 2.1.1 YAG晶體結構 4 2.2 YAG的合成 6 2.2.1 固相反應法 8 2.2.2 化學合成法 9 2.3 水熱與溶熱法 11 2.3.1 水熱與溶熱反應系統 12 2.3.2 水熱與溶熱法反應機制 13 2.3.3 水熱反應液 - 氣體積與溫度、壓力之關係 15 2.4 超臨界流體定義及性質介紹 17 2.5 螢光材料簡介 20 2.5.1 螢光材料發光機制與原理 20 2.5.2 螢光體的結構 23 2.5.3 影響發光效率之因素 24 2.6 稀土元素 28 2.6.1 稀土離子之價數 28 2.6.2 稀土離子之 f - f 電子躍遷 29 2.6.3 稀土離子之 f - d 電子躍遷 31 2.6.4 Ce : YAG 的發光光譜 31 2.7 水熱與溶熱法合成YAG粉末文獻回顧 33 第三章 實驗方法及步驟 37 3.1 起始原料 37 3.2 實驗流程 38 3.3 粉末性質分析 40 3.3.1 X-ray 粉末繞射分析 40 3.3.2 掃描式電子顯微結構觀察 41 3.3.3 穿透式電子顯微鏡分析 41 3.3.4 雷射粒徑分析 41 3.3.5 傅立葉轉換紅外線光譜儀分析 42 3.3.6 光致發光光譜分析 42 3.3.7 熱重分析 43 第四章 結果與討論 44 4.1 反應溶劑種類影響 44 4.1.1 以純水及酒精為反應溶劑 44 4.1.2 以其他醇類為反應溶劑 49 4.1.2.1 超臨界條件 49 4.1.2.2 介電常數 53 4.2 穿透式電子顯微鏡分析 60 4.3 溶劑影響綜合討論 62 4.4 反應參數最佳化 64 4.4.1 反應溫度的影響 64 4.4.2 起始濃度的影響 68 4.5 YAG反應機制探討 74 4.6 螢光性質 80 4.6.1 光致發光光譜分析 80 4.6.2 發光效率改良 83 第五章 結論 89 第六章 未來研究方向 91 6.1 晶種對YAG粉末性質之影響 91 6.2 粉末燒結性評估 94 6.3 Nd : YAG製備 96 參考文獻 98

    [1] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. R., 71, 1-34 (2010).
    [2] H. S. Yoder, M. L. Keith, “Complete substitution of aluminum for silicon: the system 3MnO•Al2O3•3SiO2-3Y2O3•5Al2O3,” Am. Mineral., 36, 519-533 (1951).
    [3] J. E. Geusic, L.G. Van Uitert, “Laser oscillations in Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett., 4, 182-184 (1964).
    [4] L. Dobrzycki, E. Bulska, D.A. Pawlak, Z.Frukacz, K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem., 43, 7656-7664 (2004).
    [5] D. A. Pawlak, K. Woźniak, Z. Frukacz, T. L. Barr, D. Fiorentino, S. Seal, “ESCA studies of yttrium aluminum garnets,” J. Phys. Chem., B 103, 1454-1461 (1999).
    [6] Y. N. Xu, W. Y. Ching, “Electronic structure of yttrium aluminum garnet (Y3Al5O12),” Phys. Rev., B 59, 10530-10535 (1999).
    [7] T. Hahn, International tables for crystallography, Volume A, Space-group symmetry, 22n revised Ed., D. Reidel Publishers, Holland, (1987).
    [8] 陳昱霖,石榴石 (Y3Al5O12) 螢光體之合成與性質研究,國立成功大學材料科學及工程學系碩士論文,民國90年。
    [9] J. H. Harris, “Sintered Aluminum Nitride Ceramics for High-Power Electronic Applications,” JOM, 50, 55-60 (1998).
    [10] 李孟蓉,離子的移動力對YAG相轉換之影響以及hexagonal-YAP、YAG生成機制探討,國立成功大學資源工程學系碩士論文,民國99年。
    [11] A. Y. Neiman, E. V. Tkachenko, L. A. Kvichko, L. A. Kotok, “Conditions and macromechanism of the solid-phase synthesis of yttrium aluminates,” Russ. J. Inorg. Chem., 25, 2340-2345 (1980).
    [12] V. B. Glushkova, V. A. Krzhizhanovskaya, O. N. Egorova, Y. P. Udalov, L. P. Kachalova, “Interaction of yttrium and aluminum oxide,” Inorg. Mater., 19, 95-99 (1983).
    [13] L. Yang, T. Lu, H. Xu, N. Wei, “Synthesis of YAG powder by the modified sol–gel combustion method,” J. All. Compd., 484, 449-451 (2009).
    [14] J. G. Li, T. Ikegami, J. H. Lee, T. Mori, Y. Yajima, “Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant,” J. Euro. Ceram. Soc., 20, 2395-2405 (2000).
    [15] Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang, H. J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull., 38, 1289-1299 (2003).
    [16] G. W. Morey, “Hydrothermal Synthesis,” J. Am. Ceram. Soc., 36, 279-285 (1953).
    [17] R. A. Laudise, “Hydrothermal synthesis of crystals,” J. Chem. Eng. News, 9, 30-43 (1987).
    [18] V. K. Lamer, R. H. Dinegar, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols,” J. Am. Chem. Soc. 72, 4847-4854 (1950).
    [19] K. Iwata, Y. M. Sun, S. Suda, ”A recovery of Carbon Oxides by Methanation Reaction Through a Pressure-Temperature Swing Process by Applying Active Protium in the Fluorinated Metal Hydride,” Inter. J. Hydrogen Energy, 24, 251-256 (1999).
    [20] G. Cao, Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, Imperial College Press, London, (2004).
    [21] R. I. Walton, “Subcritical solvothermal synthesis of condensed inorganic materials,” J. Chem. Soc. Rev., 31, 230-238 (2002).
    [22] I. Pioro, S. Mokry, Thermophysical Properties at Critical and Supercritical Conditions, Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems, Prof. A. Belmiloudi (Ed.), InTech, Rijeka, Croatia, (2011).
    [23] A. A. Peterson, F. Vogel, R. P. Lachange, M. Fröling, M. J. Antal, Jr., W. Tester, “Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies,” Energy Environ. Sci., 1, 32-65 (2008).
    [24] G. Blasse, B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin (1994).
    [25] 張永正,矽酸鹽Na3YSi2O7系螢光粉之製備與光致發光特性研究,國立成功大學材料科學及工程學系碩士論文,民國99年。
    [26] J. A. DeLuca, “An Introduction to Luminescence in Inorganic Solids,” J. Chem. Educ., 57, 541-545 (1980).
    [27] 蘇鏘,稀土元素,清華大學出版社,北京,(2000).
    [28] G. H. Dieke, H. M. Crosswhite, Spectra and energy levels of rare earth ions in crystals, Interscience Publishers, New York, (1968).
    [29] M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci., 20, 471-475 (2009).
    [30] X. Li, H. Liu, J. Wang, H. Cui, F. Han, “YAG:Ce nano-sized phosphor particles prepared by a solvotherma method,” Mater. Res. Bull., 39, 1923-1930 (2004).
    [31] X. Li, H. Liu, J. Wang, H. Cui, F. Han, “Production of Nanosized YAG Powders with Spherical Morphology and Nonaggregation via a Solvothermal Method,” J. Am. Ceram. Soc., 87, (12) 2288-2290 (2004).
    [32] X. Li, H. Liu, J. Wang, H. Cui, S. Yang, I. R. Boughton, “Solvothermal synthesis and luminescent properties of YAG: Tb nano-sized phosphors,” J. Phys. Chem. Sol., 66, 201-205 (2005).
    [33] X. Zhang, H. Liu, W. He, J. Wang, X. Li, R. I. Boughton, “Novel synthesis of YAG by solvothermal method,” J. Cryst. Growth, 275, e1913-e1917 (2005).
    [34] L. Wang, L. Zhang, Y. Fan, J. Luo, “Synthesis of Nd/Si Codoped YAG Powders via a solvothermal Method,” J. Am. Ceram. Soc., 89, 3570-3572 (2006).
    [35] X. Li, Q. Li, J. Wang, S. Yang, “Effect of process parameters on the synthesis of YAG nano-crystallites in supercritical solvent,” J. Alloy. Compx., 421, 298-302 (2006).
    [36] Z. Wu, X. Zhang, W. He, Y. Du, N. Jia, P. Liu, F. Bu, “Solvothermal synthesis of spherical YAG powders via different precipitants,” J. Alloy. Compd., 472, 576-580 (2009).
    [37] Q. X. Zheng, B. Li, H.D. Zhang, J. J. Zheng, M. H. Jiang, X. T. Tao, “Fabrication of YAG mono-dispersed particles with a novel combination method employing supercritical water process,” J. Supercrit. Fluids, 50, 77-81 (2009).
    [38] N. Jia, X. Zhang, W. He, W. Hu, X. Meng, Y. Du, J. Jiang, Y. Du, “ Property of YAG: Ce phosphors powder prepared by mixed solvothermal method,” J. Alloy. Compd., 509, 1848-1853 (2011).
    [39] A. Aboulaich, J. Deschamps, R. Deloncle, A. Potdevin, B. Devouard, G. Chadeyron, R. Mahiou, “Rapid synthesis of Ce3+ -doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors,” New J. Chem., 36, 2493-2500 (2012).
    [40] Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, and K. Arai, “Continuous Production of Phosphor YAG : Tb Nanoparticles by Hydrothermal Synthesis in Supercritical Water,” Mater. Res. Bull., 38, 1257-1265 (2003).
    [41] N. L. Lin, “Solvent guide,” Second Edition, Chemical Industry Publication, Beijing, (1994).
    [42] 江建志,氧化鈰粉體之合成及其在化學機械研磨漿料中之特性探討,逢甲大學化學工程學系碩士論文,民國92年。
    [43] T. Adschiri, Y. Hakuta, K. Arai, “Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions,” J. Nanopart. Res., 3, 227-235 (2000).
    [44] The IUPAC Solubility Data Project, 1979-1992.
    [45] H. Hayashi, Y. Hakut, “Hydrothermal synthesis of metal oxide nanoparticles in supercritical water,” Mater., 3, 3794-4817 (2010).
    [46] J. T. Kloprogge, L. Hickey, R. L. Frost, “FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites,” J. Raman Spectroscopy, 35, 967-974 (2004).
    [47] M. B. Smith, J. March, “March's Advanced Organic Chemistry,” Sixth Ed., A John Wiley & Sons, Inc., Publication, Canada, (2007).
    [48] M. Yu, J. Lin, S. B. Wang, “Sol–gel derived silicate oxyapatite phosphor films doped with rare earth ions,” J. Alloy. Compd., 344, 212-216 (2002).
    [49] E. Eych, C. Brecher, A. J. Wojtowicz, H. Lingertat, “Luminescence properties of Ce-activated YAG optical ceramic scintillator materials,” J. Lumin., 75, 193-203 (1997).
    [50] J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater., 31, 6-17 (2008).
    [51] X. Ji, J. Deng, B. Kang, H. Huang, X. Wang, W. Jing, T. Xu, “Fabrication of transparent neodymium-doped yttrium aluminum garnet ceramics by high solid loading suspensions,” Ceram. Inter., 39, 7921-7926 (2013).
    [52] Q. Lou, J. Zhou, Y. Qi, H. Cai, “Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications,” Edited by C. Sikalidis, InTech Publishers, Croatia, (2011).
    [53] N. Zafrani, Z. Sacks, S. Greenstein, I. Peer, E. Tal, E. Luria, G. Ravnitzki, D. David, A. Zajdman, N. Izhaky, “Forty years of lasers at ELOP–Elbit Systems,” Opt. Eng., 49, 091004 (2010).

    無法下載圖示 校內:2019-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE