簡易檢索 / 詳目顯示

研究生: 沈政勳
Shen, Cheng-Hsun
論文名稱: 用於中高溫型燃料電池的質子交換膜合成與性質之研究
Synthesis and properties of medium to high temperature proton exchange membranes for fuel cell applications
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 133
中文關鍵詞: 燃料電池膜材導電度交聯聚苯咪唑聚亞芳基醚碸聚亞芳基醚咪唑
外文關鍵詞: fuel cells, membranes, conductivity, cross-linking, polybenzimidazole, poly(arylene ether sulfone), poly(arylene ether benzimidazole)
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先,在此論文所研究的是,交聯的多孔性聚苯咪唑(PBI)膜的製備,使用混合低分子量的化合物(致孔劑),並且聚合物與交聯劑形成交聯性高分子膜,以提高機械強度和質子傳導性。由SEM圖示可顯示多孔高分子膜的橫截面得到孔的大小和形態。應用交聯劑,對二氯亞甲基苯,可以有效地提高含浸磷酸後的多孔PBI膜的機械性能。 CpPBI-60膜,其含浸磷酸量有9 莫耳,其拉伸模數為0.45 GPa。交聯的多孔性PBI膜具有良好的機械強度,使得它們能夠含浸更多的磷酸,因此,具有較高的質子傳導性。由Fenton’s test可得知,在自由基環境下多孔隙高分子膜的共價鍵交聯結構,使其有氧化穩定性的作用。從交聯性多孔質PBI膜含浸磷酸量顯示,電導率的增加是隨著孔隙率與的含浸磷酸量增加而增加。阻抗分析顯示交聯多孔PBI膜的導電性,在160 ℃無水條件下可以達到2.1 x 10-2 S/cm。
    在本論文研究的第二部分,一個新的磺酸化的有機化合物,1H-imidazole-4-sulfonic acid (ImSA),成功地被合成。一系列的含氟PBI與1H-imidazole-4-sulfonic acid進行混摻,用以改善PBI膜的電導率。加入ImSA可使PBI膜可塑化;斷裂伸長率增加。含浸磷酸的PBI/ImSA膜的導電性隨溫度和ImSA混摻量增加而增加。在160 ℃時含浸磷酸的PBI/ImSA的電導率可以達到7 x 10-2 S/cm。加入ImSA顯著提高了導電性,但它稍微降低PBI膜的機械性質。
    第三部分,一個全新且具有苯咪唑側鏈基團的單體成功地合成,並將其應用於親核取代聚合反應合成聚亞芳基醚碸(PAES)和聚亞芳基醚咪唑(PAEB)。 PAES和PAEB在N,N-二甲基乙醯胺(DMAc)濃度為0.5 g/L下進行測量,得到的固有粘度分別為0.56和0.93 dL/g。由FTIR,1H-NMR和元素分析進行此含苯咪唑單體,PAES和PAEB的結構分析。這些聚合物在室溫下,在常用有機溶劑中具有優異的溶解性,諸如DMAc,二甲基亞碸(DMSO),和N-甲基吡咯烷酮(NMP)等。由於PAES和PAEB側鏈的醯胺和咪唑基具有強的分子間氫鍵,故其顯示高Tg,分別可達374和381 ℃。在空氣環境下量測,PAES和PAEB的5%熱失重溫度,分別約為472和522 ℃。PAES和PAEB膜材的含浸磷酸量分別可達5.6和15.3 莫耳。含浸磷酸的膜材質子導電度隨溫度的增加而增加,在160 ℃時可以達到10-3到10-2 S/cm之間。
    第四部分,在此研究中合成的PBI共聚物含有羥基官能團。在此研究中,製備一系列交聯性聚苯咪唑薄膜,經由主鏈上的羥基作為交聯連接點。得到的膜材進行氧化穩定性,熱性能,機械性能,和質子導電性的分析。交聯膜材與非交聯膜材相比,有較佳的機械增強和熱性質。此外,膜的熱裂解溫度隨交聯程度的增加而增加。Fenton’s test可作為膜材氧化穩定性的參考,交聯膜材的氧化穩定性有顯著改善。在160 ℃下,含浸磷酸的交聯膜材質子導電性,可以保持在約8 x 10-3 S/cm。

    First, cross-linked porous polybenzimidazole (PBI) membranes were prepared by mixing a low-molecular-weight compound (porogen) and a crosslinker with the polymer to form cross-linked polymer membranes in order to increase the mechanical strength and proton conductivity. SEM images of the cross-section of the porous polymer membranes show the pore size and morphology. The cross-linking by p-xylylene dichloride can effectively improve the mechanical properties of the porous PBI membranes after phosphoric acid doping. The CpPBI-60 membrane, which is doped with 9 moles of phosphoric acid has a tensile modulus of 0.45 GPa. The good mechanical strength of the cross-linked porous PBI membranes makes them possible to hold more phosphoric acid, and consequently, higher proton conductivity. Fenton’s test indicated that the covalently cross-linked structure played an important role in the radical oxidative stability of the porous membranes. The doping level of phosphoric acid in the cross-linked porous PBI membranes showed that the enhanced conductivity was due to the increase of porosity, which results in the increase of acid uptake. Impedance analysis showed that the conductivity of the cross-linked porous PBI membranes could reach 2.1 x 10 -2 S/cm at 160 oC under anhydrous condition.
    Second, a new sulfonated organic compound, 1H-imidazole-4-sulfonic acid (ImSA), was successfully synthesized. A series of the polybenzimidazole (PBI) /1H-imidazole-4-sulfonic acid hybrid membranes were prepared from an organosoluble, fluorine-containing PBI with ImSA to improve the conductivity of PBI membranes. The introduction of ImSA rendered the plasticizing effect of the PBI membranes with the increase of elongation at break. The conductivity of the phosphoric acid doped PBI/ImSA hybrid membranes increased with both the temperature and the ImSA content. The conductivity of acid doped PBI/ImSA could reach 7 × 10-2 (S/cm) at 160 oC. The addition of ImSA could significantly improve the conductivity, but it slightly reduces the mechanical properties of the pristine PBI membranes.
    Third, a new benzimidazole containing monomer has been synthesized for the preparation of poly(arylene ether sulfone) (PAES) and poly(arylene ether benzimidazole) (PAEB) with benzimidazole side groups by nucleophilic substitution polymerization. PAES and PAEB had inherent viscosities of 0.56 and 0.93 dL/g, respectively, measured in N,N-dimethylacetamide (DMAc) at a concentration of 0.5 g/dL. The structures of the benzimidazole containing monomer, PEAS and PAEB were characterized by FTIR, 1H-NMR, and elemental analysis. These polymers showed excellent solubility in common organic solvents, such as DMAc, dimethyl sulfoxide (DMSO), and N-methyl-pyrrolidinone (NMP) at room temperature. Due to the strong intermolecular hydrogen bonding from the amide and imidazole groups in the side chains, the PAES and PAEB had unusually high Tg’s at 374 and 381 oC, correspondingly. The 5% weight loss temperatures of PAES and PAEB were around 472 and 522 oC in air, respectively. The phosphoric acid doping levels of PAES and PAEB membranes were 5.6 and 15.3. The proton conductivity of phosphoric acid doped membranes increased with increasing temperatures, and reached to a range of 10-3 to 10-2 Scm-1 at 160 oC.
    Fourth, a polybenzimidazole (PBI) copolymer containing hydroxyl functional groups was synthesized in this study. A series of cross-linked polybenzimidazole membranes have been prepared that is connected by the hydroxyl groups on the main chain. The obtained membranes are investigated in terms of oxidative stability, thermal properties, mechanical properties, and proton conductivity. The mechanical and thermal properties are enhanced in the cross-linked membranes compared to the non-cross-linked membrane. In addition, the thermal degradation temperature of membranes increased with the degree of cross-linking. The Fenton’s test was used as the reference of oxidative stability of the membranes, while the cross-linking led to significant improvement in oxidative stability of the membranes. The proton conductivity of phosphoric acid doped cross-linked membranes could be maintained in about 8 x 10-3 Scm-1 at 160 oC.

    Contents 摘要 I Abstract III 誌謝 VI Contents VII Table of contents XI Figure of contents XII CHAPTER 1 INTRODUCTION 1 1-1 Background 1 1-2 Type of fuel cells 3 1-3 Research motivation 6 CHAPTER 2 LITERATURE REVIEW 10 2-1 Proton exchange membrane fuel cells 10 2-2 PEMFC electrocatalysts and catalyst layers 12 2-3 The CO poisoning effect 13 2-4 Introduction of polybenzimidazole 14 2-4-1 Polybenzimidazole 14 2-4-2 Synthesis of PBI 15 2-4-3 Chemical structures of various PBIs 19 2-4-4 PBI applications 20 2-4-5 Mechanisms of proton transport in the fuel cell material 21 2-5 Porous PBI 25 2-6 Cross-linked PBI 28 2-7 Fenton’s test 31 CHAPTER 3 EXPERIMENTAL METHODS 33 3-1 Materials 33 3-2 Experimental instruments 34 3-3 Experimental 36 3-3-1 Synthesis and preparation of polybenzimidazole membranes 36 3-3-1-1 Synthesis of polybenzimidazole 36 3-3-1-2 Preparation of porous polybenzimidazole membranes 37 3-3-1-3 Preparation of cross-linked porous polybenzimidazole membranes 37 3-3-2 Synthesis of ImSA and preparation of hybrid membranes 39 3-3-2-1 Synthesis of 1H-imidazole-4-sulfonic acid (ImSA) 39 3-3-2-2 Preparation of ImSA-PBI hybrid membranes 40 3-3-3 Preparation of monomer and synthesis of poly(arylene ether)s 40 3-3-3-1 Preparation of benzimidazole containing monomer 40 3-3-3-2 Synthesis of 2,2'-bis(4-fluoro-phenyl)-6,6'-bibenzimidazole (BFPB) 42 3-3-3-3 Synthesis of poly(arylene ether sulfone) (PAES) 44 3-3-3-4 Synthesis of poly(arylene ether benzimidazole) (PAEB) 44 3-3-3-5 Preparation of poly(arylene ether)s membranes 45 3-3-4 Polymer synthesis 46 3-3-4-1 Synthesis of PBI30OH copolymer 46 3-3-4-2 Preparation of Cross-linked Polybenzimidazole Membranes 47 3-3-5 Phosphoric acid doping of polymer membranes 49 3-4 Characterization methods 50 3-4-1 Inherent Viscosity 50 3-4-2 Fourier Transfer-Infrared Spectrometry (FTIR) 51 3-4-3 Nuclear Magnetic Resonance (NMR) 51 3-4-4 Thermogravimetric Analysis (TGA) 52 3-4-5 Transmission Electron Microscopy (TEM) 53 3-4-6 Scanning Electron Microscope (SEM) 53 3-4-7 Thermal Mechanical Analysis (TMA) 54 3-4-8 Tensile Properties Analysis 55 3-4-9 Methanol Permeability 56 3-4-10 AC impedance 57 3-4-11 Proton conductivity 59 CHAPTER 4 RESULTS AND DISCUSSION 61 4-1 Cross-linked porous polybenzimidazole membranes 61 4-1-1 Preparation of porous PBI and cross-linked porous membranes 61 4-1-2 Morphology of porous PBI membranes 62 4-1-3 Characterization of cross-linked PBI membranes 64 4-1-4 Mechanical properties of porous and cross-linked porous PBI membranes 65 4-1-5 Chemical stability 68 4-1-6 Proton conductivity 70 4-2 Polybenzimidazole/1H-imidazole-4-sulfonic acid hybrid membranes 74 4-2-1 Synthesis of 1H-imidazole-4-sulfonic acid (ImSA) 74 4-2-2 Characterization of ImSA-PBI hybrid membranes 74 4-2-3 Thermal properties of ImSA-PBI hybrid membranes 77 4-2-4 Mechanical properties of ImSA-PBI hybrid membranes 79 4-2-5 Methanol permeability of ImSA-PBI hybrid membranes 79 4-2-6 Proton conductivity of ImSA-PBI hybrid membranes 81 4-3 Membranes base on poly(arylene ether)s with benzimidazole side groups……………………………………………………………………..84 4-3-1 Polymer Synthesis and Membrane Fabrication 84 4-3-2 Thermal and Mechanical Properties of PAES and PAEB 90 4-3-3 Proton Conductivity of PAES and PAEB Membranes 92 4-4 Novel cross-linked polybenzimidazole membranes 94 4-4-1 Synthesis and characterization of PBI30OH-X-di and PBI30OH-X-si 94 4-4-2 Thermal properties 97 4-4-3 Mechanical properties 101 4-4-4 Chemical stability 104 4-4-5 Proton Conductivity 105 CHAPTER 5 CONCLUSIONS 108 REFERENCES 111

    REFERENCES
    [1] Y. Tang, J. Zhang, C. Song, H. Liu, J. Zhang, H. Wang, S. Mackinnon, T. Peckham, J. Li, S. McDermid, and P. Kozak, Temperature dependent performance and in situ AC impedance of high-temperature PEM fuel cells using the nafion-112 membrane, Journal of the Electrochemical Society, 153, 11, A2036-A2043, 2006.
    [2] W. R. Grove, On Voltaic Series and the Combination of Gases by Platinum, Philosophical Magazine and Journal of Science, XIV, 1839.
    [3] R. Singh, A. A. Shah, A. Potter, B. Clarkson, A. Creeth, C. Downs, and F. C. Walsh, Performance and analysis of a novel polymer electrolyte membrane fuel cell using a solution based redox mediator, Journal of Power Sources, 201, 159-163, 2012.
    [4] C.-C. Lin, W.-F. Lien, Y.-Z. Wang, H.-W. Shiu, and C.-H. Lee, Preparation and performance of sulfonated polyimide/Nafion multilayer membrane for proton exchange membrane fuel cell, Journal of Power Sources, 200, 1-7, 2012.
    [5] H.-L. Lin, T.-H. Tang, C.-R. Hu, and T. L. Yu, Poly(benzimidazole)/silica-ethyl-phosphoric acid hybrid membranes for proton exchange membrane fuel cells, Journal of Power Sources, 201, 72-80, 2012.
    [6] F. Javier Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount, Rsc Advances, 2, 4, 1547-1556, 2012.
    [7] I. Kalamaras, M. K. Daletou, V. G. Gregoriou, and J. K. Kallitsis, Sulfonated Aromatic Polyethers Containing Pyridine Units as Electrolytes for High Temperature Fuel Cells, Fuel Cells, 11, 6, 921-931, 2011.
    [8] L. Barelli, G. Bidini, F. Gallorini, and A. Ottauiano, An energetic-exergetic comparison between PEMFC and SOFC-based micro-CHP systems, International Journal of Hydrogen Energy, 36, 4, 3206-3214, 2011.
    [9] I. Corni, M. P. Ryan, and A. R. Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, Journal of the European Ceramic Society, 28, 7, 1353-1367, 2008.
    [10] J. M. Vohs and R. J. Gorte, High-Performance SOFC Cathodes Prepared by Infiltration, Advanced Materials, 21, 9, 943-956, 2009.
    [11] S. M. Choi, J. H. Kim, J. Y. Jung, E. Y. Yoon, and W. B. Kim, Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation, Electrochimica Acta, 53, 19, 5804-5811, 2008.
    [12] N. Jha, A. L. M. Reddy, M. M. Shaijumon, N. Rajalakshmi, and S. Ramaprabhu, Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell, International Journal of Hydrogen Energy, 33, 1, 427-433, 2008.
    [13] C. Xu, T. S. Zhao, and W. W. Yang, Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells, Journal of Power Sources, 178, 1, 291-308, 2008.
    [14] H. Bunazawa and Y. Yamazaki, Influence of anion ionomer content and silver cathode catalyst on the performance of alkaline membrane electrode assemblies (MEAs) for direct methanol fuel cells (DMFCs), Journal of Power Sources, 182, 1, 48-51, 2008.
    [15] K. Scott, E. Yu, G. Vlachogiannopoulos, M. Shivare, and N. Duteanu, Performance of a direct methanol alkaline membrane fuel cell, Journal of Power Sources, 175, 1, 452-457, 2008.
    [16] R. N. Singh, T. Sharma, A. Singh, Anindita, D. Mishra, and S. K. Tiwari, Perovskite-type La2-xSrxNiO4 (0 <= x <= 1) as active anode materials for methanol oxidation in alkaline solutions, Electrochimica Acta, 53, 5, 2322-2330, 2008.
    [17] B. K. Kakati and V. Mohan, Development of low-cost advanced composite bipolar plate for proton exchange membrane fuel cell, Fuel Cells, 8, 1, 45-51, 2008.
    [18] H.-L. Lin, T. L. Yu, W.-K. Chang, C.-P. Cheng, C.-R. Hu, and G.-B. Jung, Preparation of a low proton resistance PBI/PTFE composite membrane, Journal of Power Sources, 164, 2, 481-487, 2007.
    [19] H. Pu, L. Wang, H. Pan, and D. Wan, Synthesis and Characterization of Fluorine-Containing Polybenzimidazole for Proton Conducting Membranes in Fuel Cells, Journal of Polymer Science Part a-Polymer Chemistry, 48, 10, 2115-2122, 2010.
    [20] S. Kang, C. Zhang, G. Xiao, D. Yan, and G. Sun, Synthesis and properties of soluble sulfonated polybenzimidazoles from 3,3 '-disulfonate-4,4 '-dicarboxylbiphenyl as proton exchange membranes, Journal of Membrane Science, 334, 1-2, 91-100, 2009.
    [21] S.-W. Chuang and S. L.-C. Hsu, Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications, Journal of Polymer Science Part a-Polymer Chemistry, 44, 15, 4508-4513, 2006.
    [22] G. Qian, D. W. Smith, Jr., and B. C. Benicewicz, Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells, Polymer, 50, 16, 3911-3916, 2009.
    [23] L. X. Xiao, H. F. Zhang, E. Scanlon, L. S. Ramanathan, E. W. Choe, D. Rogers, T. Apple, and B. C. Benicewicz, High-temperature polybenzimidazole fuel cell membranes via a sol-gel process, Chemistry of Materials, 17, 21, 5328-5333, 2005.
    [24] D. Weng, J. S. Wainright, U. Landau, and R. F. Savinell, Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures, Journal of the Electrochemical Society, 143, 4, 1260-1263, 1996.
    [25] S.-K. Kim, T.-H. Kim, J.-W. Jung, and J.-C. Lee, Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications, Polymer, 50, 15, 3495-3502, 2009.
    [26] 林昇佃等, 燃料電池:世紀新能源: 滄海書局, 2004.
    [27] Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Progress in Polymer Science, 34, 5, 449-477, 2009.
    [28] M. Mamlouk and K. Scott, Mass Transport Characteristics of Cathodes in a Phosphoric Acid Polybenzimidazole Membrane Fuel Cell, Journal of Fuel Cell Science and Technology, 8, 6, 2011.
    [29] S. S. Araya, S. J. Andreasen, H. V. Nielsen, and S. K. Kaer, Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell, International Journal of Hydrogen Energy, 37, 23, 18231-18242, 2012.
    [30] G.-B. Jung, C.-C. Tseng, C.-C. Yeh, and C.-Y. Lin, Membrane electrode assemblies doped with H3PO4 for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 37, 18, 13645-13651, 2012.
    [31] A. Kamat, O. Klein, M. Herrmann, U. Krewer, and S. Scholl, Phosphoric Acid Adsorption Hysteresis in a Polybenzimidazole High Temperature Polymer Electrolyte Membrane Fuel Cell, Chemie Ingenieur Technik, 84, 12, 2198-2203, 2012.
    [32] E. van de Ven, A. Chairuna, G. Merle, S. P. Benito, Z. Borneman, and K. Nijmeijer, Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications, Journal of Power Sources, 222, 202-209, 2013.
    [33] B. Xing and O. Savadogo, Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochemistry Communications, 2, 10, 697-702, 2000.
    [34] C. Hasiotis, L. Qingfend, V. Deimede, J. K. Kallitsis, C. G. Kontoyannis, and N. J. Bjerrum, Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells, Journal of the Electrochemical Society, 148, 5, A513-A519, 2001.
    [35] J. A. Asensio, S. Borros, and P. Gomez-Romero, Sulfonated poly(2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells, Electrochimica Acta, 49, 25, 4461-4466, 2004.
    [36] J. O. Jensen, Q. Li, R. He, C. Pan, and N. J. Bjerrum, 100-200 degrees C polymer fuel cells for use with NaAlH4, Journal of Alloys and Compounds, 404, 653-656, 2005.
    [37] N. H. Jalani, M. Ramani, K. Ohlsson, S. Buelte, G. Pacifico, R. Pollard, R. Staudt, and R. Datta, Performance analysis and impedance spectral signatures of high temperature PBI-phosphoric acid gel membrane fuel cells, Journal of Power Sources, 160, 2, 1096-1103, 2006.
    [38] R. He, Q. Li, J. O. Jensen, and N. J. Bjerrum, Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells, Journal of Polymer Science Part a-Polymer Chemistry, 45, 14, 2989-2997, 2007.
    [39] B. K. Kakati and D. Deka, Differences in physico-mechanical behaviors of resol(e) and novolac type phenolic resin based composite bipolar plate for proton exchange membrane (PEM) fuel cell, Electrochimica Acta, 52, 25, 7330-7336, 2007.
    [40] A.-C. Dupuis, Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques, Progress in Materials Science, 56, 3, 289-327, 2011.
    [41] Q. F. Li, R. H. He, J. A. Gao, J. O. Jensen, and N. J. Bjerrum, The CO poisoning effect in PEMFCs operational at temperatures up to 200 degrees C, Journal of the Electrochemical Society, 150, 12, A1599-A1605, 2003.
    [42] C.-P. Wang, H.-S. Chu, Y.-Y. Yan, and K.-L. Hsueh, Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells, Journal of Power Sources, 170, 2, 235-241, 2007.
    [43] S. J. Lee, S. Mukerjee, E. A. Ticianelli, and J. McBreen, Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells, Electrochimica Acta, 44, 19, 3283-3293, 1999.
    [44] S. Mukerjee, S. J. Lee, E. A. Ticianelli, J. McBreen, B. N. Grgur, N. M. Markovic, P. N. Ross, J. R. Giallombardo, and E. S. De Castro, Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst, Electrochemical and Solid State Letters, 2, 1, 12-15, 1999.
    [45] R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, and C. Rogers, A polymer electrolyte for operation at temperatures up to 200-degrees-C, Journal of the Electrochemical Society, 141, 4, L46-L48, 1994.
    [46] S. Gottesfeld and J. Pafford, A new approach to the problem of carbon-monoxide poisoning in fuel-cells operating at low-temperatures, Journal of the Electrochemical Society, 135, 10, 2651-2652, 1988.
    [47] J. Mader, L. Xiao, T. J. Schmidt, and B. C. Benicewicz, "Polybenzimidazole/Acid Complexes as High-Temperature Membranes," in Fuel Cells Ii. vol. 216, G. G. Scherer, Ed., ed, 2008, pp. 63-124.
    [48] W. Wang, The effect of internal air bleed on CO poisoning in a proton exchange membrane fuel cell, Journal of Power Sources, 191, 2, 400-406, 2009.
    [49] T. Kadyk, S. Kirsch, R. Hanke-Rauschenbach, and K. Sundmacher, Autonomous potential oscillations at the Pt anode of a polymer electrolyte membrane fuel cell under CO poisoning, Electrochimica Acta, 56, 28, 10593-10602, 2011.
    [50] F. M. Sapountzi, S. C. Divane, M. N. Tsampas, and C. G. Vayenas, Enhanced performance of CO poisoned proton exchange membrane fuel cells via triode operation, Electrochimica Acta, 56, 20, 6966-6975, 2011.
    [51] C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells, Journal of Power Sources, 103, 1, 1-9, 2001.
    [52] J. Wang, G. Yin, Y. Shao, Z. Wang, and Y. Gao, Platinum deposition on multiwalled carbon nanotubes by ion-exchange method as electrocatalysts for oxygen reduction, Journal of the Electrochemical Society, 154, 7, B687-B693, 2007.
    [53] Y. Shao, G. Yin, Z. Wang, and Y. Gao, Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges, Journal of Power Sources, 167, 2, 235-242, 2007.
    [54] H. Vogel and C. S. Marvel, Polybenzimidazoles, new thermally stable polymers, Journal of Polymer Science, 50, 154, 511-539, 1961.
    [55] M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, and N. Ogata, Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules, Electrochimica Acta, 45, 8-9, 1395-1398, 2000.
    [56] O. Savadogo and B. Xing, Hydrogen/oxygen polymer electrolyte membrane fuel cell (PEMFC) based on acid-doped polybenzimidazole (PBI), Journal of New Materials for Electrochemical Systems, 3, 4, 343-347, 2000.
    [57] T.-H. Kim, T.-W. Lim, and J.-C. Lee, High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting, Journal of Power Sources, 172, 1, 172-179, 2007.
    [58] T.-H. Kim, S.-K. Kim, T.-W. Lim, and J.-C. Lee, Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes, Journal of Membrane Science, 323, 2, 362-370, 2008.
    [59] J. Roziere and D. J. Jones, Non-fluorinated polymer materials for proton exchange membrane fuel cells, Annual Review of Materials Research, 33, 503-555, 2003.
    [60] W. Wrasidlo and H. H. Levine, Polybenzimidazoles .i. reaction mechanism + kinetics, Journal of Polymer Science Part a-General Papers, 2, 11P, 4795-4808, 1964.
    [61] Y. Iwakura, Y. Imai, and K. Uno, Polyphenylenebenzimidazoles, Journal of Polymer Science Part a-General Papers, 2, 6PA, 2605-2615, 1964.
    [62] Y. Iwakura, K. Uno, and Y. Imai, Polybenzimidazoles .2. polyalkylenebenzimidazoles, Makromolekulare Chemie, 77, 33-40, 1964.
    [63] Y. Iwakura, K. Uno, Y. Imai, and M. Fukui, Polybenzimidazoles .3. polyamides containing benzimidazole rings, Makromolekulare Chemie, 77, 41-50, 1964.
    [64] F. L. Hedberg and C. S. Marvel, New single-step process for polybenzimidazole synthesis, Journal of Polymer Science Part a-Polymer Chemistry, 12, 8, 1823-1828, 1974.
    [65] P. E. Eaton, G. R. Carlson, and J. T. Lee, Phosphorus pentoxide-methanesulfonic acid - convenient alternative to polyphosphoric acid, Journal of Organic Chemistry, 38, 23, 4071-4073, 1973.
    [66] H. J. Kim, S. Y. Cho, S. J. An, Y. C. Eun, J. Y. Kim, H. K. Yoon, H. J. Kweon, and K. H. Yew, Synthesis of poly(2,5-benzimidazole) for use as a fuel-cell membrane, Macromolecular Rapid Communications, 25, 8, 894-897, 2004.
    [67] J. Jouanneau, R. Mercier, L. Gonon, and G. Gebel, Synthesis of sulfonated polybenzimidazoles from functionalized monomers: Preparation of ionic conducting membranes, Macromolecules, 40, 4, 983-990, 2007.
    [68] R. F. Kovar and F. E. Arnold, Para-ordered polybenzimidazole, Journal of Polymer Science Part a-Polymer Chemistry, 14, 11, 2807-2817, 1976.
    [69] L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, L. S. Ramanathan, S. Yu, and B. C. Benicewicz, Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications, Fuel Cells, 5, 2, 287-295, 2005.
    [70] J. K. Kallitsis and N. Gourdoupi, Proton conducting membranes based on polymer blends for use in high temperature PEM fuel cells, Journal of New Materials for Electrochemical Systems, 6, 4, 217-222, 2003.
    [71] M. K. Daletou, N. Gourdoupi, and J. K. Kallitsis, Proton conducting membranes based on blends of PBI with aromatic polyethers containing pyridine units, Journal of Membrane Science, 252, 1-2, 115-122, 2005.
    [72] J. A. Asensio, S. Borros, and P. Gomez-Romero, Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells, Electrochemistry Communications, 5, 11, 967-972, 2003.
    [73] Y. L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells, Journal of the Electrochemical Society, 151, 1, A8-A16, 2004.
    [74] K. D. Kreuer, Proton conductivity: Materials and applications, Chemistry of Materials, 8, 3, 610-641, 1996.
    [75] N. Agmon, The grotthuss mechanism, Chemical Physics Letters, 244, 5-6, 456-462, 1995.
    [76] Y.-H. Su, Y.-L. Liu, Y.-M. Sun, J.-Y. Lai, D.-M. Wang, Y. Gao, B. Liu, and M. D. Guiver, Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells, Journal of Membrane Science, 296, 1-2, 21-28, 2007.
    [77] B. S. Pivovar, W. H. Smyrl, and E. L. Cussler, Electro-osmosis in Nafion 117, polystyrene sulfonic acid, and polybenzimidazole, Journal of the Electrochemical Society, 152, 1, A53-A60, 2005.
    [78] B. S. Pivovar, An overview of electro-osmosis in fuel cell polymer electrolytes, Polymer, 47, 11, 4194-4202, 2006.
    [79] K. D. Kreuer, A. Rabenau, and W. Weppner, Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors, Angewandte Chemie-International Edition in English, 21, 3, 208-209, 1982.
    [80] D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, and I. Cantero, Porous polybenzimidazole membranes doped with phosphoric acid: Highly proton-conducting solid electrolytes, Chemistry of Materials, 16, 4, 604-607, 2004.
    [81] J. Weber, M. Antonietti, and A. Thomas, Mesoporous poly(benzimidazole) networks via solvent mediated templating of hard spheres, Macromolecules, 40, 4, 1299-1304, 2007.
    [82] P. Makowski, J. Weber, A. Thomas, and F. Goettmann, A mesoporous poly(benzimidazole) network as a purely organic heterogeneous catalyst for the Knoevenagel condensation, Catalysis Communications, 10, 2, 243-247, 2008.
    [83] J. Weber, K.-D. Kreuer, J. Maier, and A. Thomas, Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts, Advanced Materials, 20, 13, 2595-2598, 2008.
    [84] S. A. Johnson, P. J. Ollivier, and T. E. Mallouk, Ordered mesoporous polymers of tunable pore size from colloidal silica templates, Science, 283, 5404, 963-965, 1999.
    [85] J. Y. Kim, S. B. Yoon, F. Kooli, and J. S. Yu, Synthesis of highly ordered mesoporous polymer networks, Journal of Materials Chemistry, 11, 12, 2912-2914, 2001.
    [86] A. H. Lu, W. Schmidt, B. Spliethoff, and F. Schuth, Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume, Advanced Materials, 15, 19, 1602-1606, 2003.
    [87] T. von Graberg, A. Thomas, A. Greiner, M. Antonietti, and J. Weber, Electrospun Silica-Polybenzimidazole Nanocomposite Fibers, Macromolecular Materials and Engineering, 293, 10, 815-819, 2008.
    [88] S.-K. Kim, T.-H. Kim, T. Ko, and J.-C. Lee, Cross-linked poly(2,5-benzimidazole) consisting of wholly aromatic groups for high-temperature PEM fuel cell applications, Journal of Membrane Science, 373, 1-2, 80-88, 2011.
    [89] S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, M. Li, J. Wang, Z. Liu, L. Zhang, and H. Na, Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 36, 14, 8412-8421, 2011.
    [90] K. Y. Wang, Y. Xiao, and T.-S. Chung, Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin, Chemical Engineering Science, 61, 17, 5807-5817, 2006.
    [91] C.-H. Shen, L.-C. Jheng, S. L.-C. Hsu, and J. T.-W. Wang, Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells, Journal of Materials Chemistry, 21, 39, 15660-15665, 2011.
    [92] H.-L. Lin, Y.-C. Chou, T. L. Yu, and S.-W. Lai, Poly(benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 37, 1, 383-392, 2012.
    [93] Q. Li, C. Pan, J. O. Jensen, P. Noye, and N. J. Bjerrum, Cross-linked polybenzimidazole membranes for fuel cells, Chemistry of Materials, 19, 3, 350-352, 2007.
    [94] H. Xu, K. Chen, X. Guo, J. Fang, and J. Yin, Synthesis of hyperbranched polybenzimidazoles and their membrane formation, Journal of Membrane Science, 288, 1-2, 255-260, 2007.
    [95] P. Noy, Q. Li, C. Pan, and N. J. Bjerrurn, Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker, Polymers for Advanced Technologies, 19, 9, 1270-1275, 2008.
    [96] D. Aili, Q. Li, E. Christensen, J. O. Jensen, and N. J. Bjerrum, Crosslinking of polybenzimidazole membranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications, Polymer International, 60, 8, 1201-1207, 2011.
    [97] J. Kerres, A. Ullrich, F. Meier, and T. Haring, Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells, Solid State Ionics, 125, 1-4, 243-249, 1999.
    [98] V. Deimede, G. A. Voyiatzis, J. K. Kallitsis, L. Qingfeng, and N. J. Bjerrum, Miscibility behavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cell applications, Macromolecules, 33, 20, 7609-7617, 2000.
    [99] C. Hasiotis, V. Deimede, and C. Kontoyannis, New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole, Electrochimica Acta, 46, 15, 2401-2406, 2001.
    [100] Y. Zhai, H. Zhang, Y. Zhang, and D. Xing, A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells, Journal of Power Sources, 169, 2, 259-264, 2007.
    [101] V. A. Deimede, K. V. Fragou, E. G. Koulouri, J. K. Kallitsis, and G. A. Voyiatzis, Miscibility behavior of polyamide 11/sulfonated polysulfone blends using thermal and spectroscopic techniques, Polymer, 41, 26, 9095-9101, 2000.
    [102] J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, and J. A. Aguilar, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, Journal of Membrane Science, 306, 1-2, 47-55, 2007.
    [103] H. Xu, K. Chen, X. Guo, J. Fang, and J. Yin, Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application, Polymer, 48, 19, 5556-5564, 2007.
    [104] Z. Chang, H. Pu, D. Wan, L. Liu, J. Yuan, and Z. Yang, Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells, Polymer Degradation and Stability, 94, 8, 1206-1212, 2009.
    [105] S.-W. Chuang, S. L.-C. Hsu, and Y.-H. Liu, Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells, Journal of Membrane Science, 305, 1-2, 353-363, 2007.
    [106] B. Radi, R. M. Wellard, and G. A. George, Controlled Poly(ethylene glycol) Network Structures through Silsesquioxane Cross-Links Formed by Sol-Gel Reactions, Macromolecules, 43, 23, 9957-9963, 2010.
    [107] J.-H. Kim, H.-J. Kim, T.-H. Lim, and H.-I. Lee, Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer, Journal of Power Sources, 170, 2, 275-280, 2007.
    [108] D. Rivin, C. E. Kendrick, P. W. Gibson, and N. S. Schneider, Solubility and transport behavior of water and alcohols in Nafion (TM), Polymer, 42, 2, 623-635, 2001.
    [109] V. Tricoli, Proton and methanol transport in poly(perfluorosulfonote) membranes containing Cs+ and H+ cations, Journal of the Electrochemical Society, 145, 11, 3798-3801, 1998.
    [110] P. Mukoma, B. R. Jooste, and H. C. M. Vosloo, A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations, Journal of Membrane Science, 243, 1-2, 293-299, 2004.
    [111] H. Y. Chang and C. W. Lin, Proton conducting membranes based on PEG/SiO2 nanocomposites for direct methanol fuel cells, Journal of Membrane Science, 218, 1-2, 295-306, 2003.
    [112] N. Ramaswamy, N. Hakim, and S. Mukerjee, Degradation mechanism study of perfluorinated proton exchange membrane under fuel cell operating conditions, Electrochimica Acta, 53, 8, 3279-3295, 2008.
    [113] 陳盈助, Influencesof Electrolyte Formula on the Performance of Lithium Ion Batteries, 成功大學化學工程研究所碩士論文, 2002.
    [114] K. Y. Wang, Q. Yang, T.-S. Chung, and R. Rajagopalan, Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall, Chemical Engineering Science, 64, 7, 1577-1584, 2009.
    [115] S.-W. Chuang and S. L.-C. Hsu, Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications, J. Polym. Sci. Pol. Chem., 44, 15, 4508-4513, 2006.
    [116] G. Zhang, X. Guo, J. Fang, K. Chen, and K.-I. Okamoto, Preparation and properties of covalently cross-linked sulfonated copolyimide membranes containing benzimidazole groups, Journal of Membrane Science, 326, 2, 708-713, 2009.
    [117] H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, and H. Na, Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance, Journal of Membrane Science, 308, 1-2, 66-74, 2008.
    [118] C. Zhao, H. Lin, M. Han, and H. Na, Covalently cross-linked proton exchange membranes based on sulfonated poly(arylene ether ketone) and polybenzimidazole oligomer, Journal of Membrane Science, 353, 1-2, 10-16, 2010.
    [119] S.-W. Chuang, S. L.-C. Hsu, and M.-L. Yang, Preparation and characterization of fluorine-containing polybenzimidazole/imidazole hybrid membranes for proton exchange membrane fuel cells, European Polymer Journal, 44, 7, 2202-2206, 2008.
    [120] M. Han, G. Zhang, Z. Liu, S. Wang, M. Li, J. Zhu, H. Li, Y. Zhang, C. M. Lew, and H. Na, Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells, Journal of Materials Chemistry, 21, 7, 2187-2193, 2011.
    [121] F. Jiang, H. Pu, W. H. Meyer, Y. Guan, and D. Wan, A new anhydrous proton conductor based on polybenzimidazole and tridecyl phosphate, Electrochimica Acta, 53, 13, 4495-4499, 2008.
    [122] N. N. Krishnan, H.-J. Lee, H.-J. Kim, J.-Y. Kim, I. Hwang, J. H. Jang, E. A. Cho, S.-K. Kim, D. Henkensmeier, S.-A. Hong, and T.-H. Lim, Sulfonated poly(ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications, European Polymer Journal, 46, 7, 1633-1641, 2010.

    下載圖示 校內:2019-01-08公開
    校外:2023-12-31公開
    QR CODE