| 研究生: |
王士碩 Wang, Shih-Shuo |
|---|---|
| 論文名稱: |
利用化學共沉法製作二氧化鈦變阻器之研究 |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 變阻器 、二氧化鈦 |
| 外文關鍵詞: | varistor, titania |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TiO2陶瓷體可藉由添加適當之添加劑及製程改善,使其具有良好的介電與變阻效應,本論文主要研究不同的結晶相粉末、燒結溫度與冷卻方式對TiO2陶瓷體變阻性質之影響。
相較於傳統固態反應法,利用化學共沉法制備的粉末因為顆粒較細,故具有較佳的燒結活性,故本研究利用化學共沉法製備摻Ba2+、Bi3+、Nb5+之TiO2粉末,嘗試在較低溫(<1200℃)製備TiO2變阻器。
不同的煆燒溫度可以得到不同的結晶相,而不同的結晶相會因為具有不同特性而造成燒結後陶瓷體的電性差異,由實驗結果,起始粉末為銳鈦礦相的樣品其變阻特性較銳鈦礦與金紅石混合相、金紅石相佳。本論文亦研究了不同的冷卻方式(淬冷、爐冷)對微結構與變阻性質的影響,淬冷之樣品會在晶界處析出Ba2Ti9O20相及極少量之細晶粒Bi2Ti4O11相;而爐冷方式冷卻的樣品因為其二次相Bi2Ti4O11在冷卻過程中會聚集且長大為大顆粒的二次相晶粒而使得變阻性質劣化,故淬冷樣品的變阻特性較爐冷佳。
整體來說,製程條件為起始粉末銳鈦礦相、較高溫燒結、淬冷方式冷卻的樣品有最佳的變阻性質,其α值為2.91;Eb值為146.26 V/mm。
In this study, the TiO2 varistor doped with Ba2+、Bi3+、Nb5+ were prepared using co-precipitation method in order to decrease the sintering temperature to below 1200℃. The effects of the crystalline phases of precursors, sintering temperatures and cooling ways on the microstructures and electrical properties of (Ba,Bi,Nb)-added TiO2 ceramics were investigated.
The observed results can be described as follows:
1. The samples sintered at higher sintering temperature possessed better varistor properties.
2. The sintered compacts made from anatase powder possessed the best varistor property by comparing with other two crystallite phase precursors, anatase + rutile and rutile.
3. Compared with the influences of two cooling ways, quenching in air and furnace cooling, Ba2Ti9O20 and Bi2Ti4O11 phases segregated on grain boundaries and triple junctions for quenched samples. For furnace cooling samples, Bi2Ti4O11 crystallites were observed to coarsen during cooling, which resulted in degradation of varistor properties.
In conclusion, the TiO2 ceramics made from anatase precursor, sintered at higher temperature, and quenched in air can obtain the best varistor properties, α is 2.91 and Eb is 146.26 V/mm.
1. M. F. Yan and W. W. Rhodes, “Low Temperature Sintering of TiO2,” Mater. Sci. Eng., 61(1983)59-66.
2. 邱碧秀,電子陶瓷材料,國立編譯館,徐氏基金會出版。(1988) 197-239。
3. 吳朗,電子陶瓷-半導體,全欣資訊。(1994) 169-213。
4. M. F. Yan and W. W. Rhodes, “Varistor Properties of (Nb,Ba)-Doped TiO2,” in Grain Boundaries in Semiconductors, Elsevier Science Publishing Company, Inc., (1982) 357-362.
5. N. Yamaoka, M. Masuyama and M. Fukui, “SrTiO3-Based Boundary Layer Capacitor Having Varistor Characteristics,” Am. Ceram. Soc. Bull., 62 (1983) 698-703.
6. M. F. Yan and W. W. Rhodes, “Preparation and Properties of TiO2 Varistors,” Appl. Phys. Lett., 40 [6] (1982) 536-537.
7. L. B. Kong, L. Y. Zhang and X. Yao, “TiO2 Based Varistors Derived from Powders Prepared by Sol-Gel Process,” Mater. Lett., 32 (1997) 5-8.
8. S. L. Yang and J. M. Wu, “Novel Niobium-Doped Titania Varistor with Added Barium and Bismuth,” J. Am. Ceram. Soc., 76 [1] (1993) 145-152.
9. S. L. Yang and J. M. Wu, “Varied Atmosphere Compensation-Exploring the Roles of Barium and Bismuth in (Ba,Bi,Nb)-Doped TiO2 Varistors,” J. Am. Ceram. Soc., 78 [8] (1995) 2203-2208.
10. J. J. Cheng and J. M. Wu, “Effect of Powder Characteristics on Electrical Properties of (Ba,Bi,Nb)-Added TiO2 Ceramics,” Jpn. J. Appl. Phys., 35 (1996) 4704-4710.
11. J. M. Wu and H. M. Sung, “Microsructural Development During Cooling and its Influence on the Dielectric Properties of barium- and Niobium- doped TiO2 Ceramics,” Materials Science and Engineering, B3 (1989) 265-272.
12. J. M. Wu and H. M. Sung, “Nature of Abnormal Grain Growth in (Ba,Nb)-Doped TiO2 Ceramics and Effect of Crystal Phases in Starting Powders,” J. Am. Ceram. Soc., 73 [4] (1990) 996-1003.
13. C. G. Koops, “On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies,” Phys. Rev. 83 (1951) 121-124.
14. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, John Wiley & Sons, Inc., (1976) 913-960.
15. E. A. Barringer and H. K. Bowen, ”Formation, Packing, and Sintering of Monodisperse TiO2 Powders,” J. Am. Ceram. Soc., 65 (1982) C-199~C-201.
16. J. M. Wu and C. J. Chen, “Effect of Powder Characteristics on Microstructures and Dielectric Properties of (Ba,Nb)-Doped Titania Ceramics,” J. Am. Ceram. Soc., 73 [2] (1990) 420-424.
17. 向性一、李宏文,”奈米TiO2粉末之製備及其相轉換之研究”,行政院國家科學委員會專題研究計畫成果報告。(2002)
18. 林世忠,”陳化處理對化學沉澱法生成之奈米二氧化鈦粉末之晶粒成長及相轉換的影響”,國立成功大學資源工程研究所,碩士論文。(2003)
19. W. Heywang, “Resistivity Anomaly in Doped Barium Titanate,” J. Am. Ceram. Soc., 47 [10] (1964) 484-490.
20. J. M. Wu and C. J. Chen, ”Dielectric Properties of (Ba,Nb) Doped TiO2 Ceramics : Migration Mechanism and Roles of (Ba,Nb),” J. Mater. Sci. 23.(1988) 4157-4164.
21. 陳繼仁,”TiO2陶瓷的燒結、電性及晶界偏析理論”. 國立清華大學材料科學工程研究所,博士論文。(1988)
22. 林財發,”鈦酸鋇陶瓷正溫度係數與介電特性之研究”. 國立清華大學材料科學工程研究所,博士論文。(1989)
23. 楊盛如,”Effects of Additives-(Ba,Bi,Nb,Cu) on Microstructures and Electrical Properties of TiO2-Based Ceramics”. 國立清華大學材料科學工程研究所,博士論文。(1992)
24. 張榮邦,”添加劑對鈮摻雜半導化二氧化鈦陶瓷電性之影響”. 國立清華大學材料科學工程研究所,碩士論文。(1994)
25. 王萬鈞,”結晶相粉末及添加劑對TiO2陶瓷體電性之影響”. 國立清華大學材料科學工程研究所,碩士論文。(1995)
26. 鄭建章,”醇鹽法製備二氧化鈦變阻陶瓷的微觀與電性之研究”. 國立清華大學材料科學工程研究所,博士論文。(1996)