| 研究生: |
蔡旻侑 Tsai, Min-You |
|---|---|
| 論文名稱: |
以啟發式演算法求解考量碳排放之多車種接駁補貨車輛路徑問題 A Heuristic Algorithm for Heterogeneous Fleet Feeder Vehicle Routing Problem Considering Carbon Emission |
| 指導教授: |
張秀雲
Chang, Shiow-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 接駁補貨車輛路徑問題 、整數規劃 、啟發式演算法 、模擬退火法 、碳排放 |
| 外文關鍵詞: | Feeder Vehicle Routing Problem, Integer Programming, Heuristic Algorithm, Simulated Annealing, Carbon Emission |
| 相關次數: | 點閱:128 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子商務的蓬勃發展,宅配的需求也逐漸增加,進而讓傳統物流業者紛紛轉型或成立宅配部門。面對同業間的競爭壓力,物流業者為了提升競爭力和減少運輸成本,所以就有研究提出接駁補貨車輛路徑問題(Feeder Vehicle Routing Problem, FVRP)的配送模式,此問題屬於VRP的延伸,主要是利用大車與機車配合進行配送服務,當機車配送完貨物後,可以直接找大車進行補貨,此補貨方式可以讓整體移動成本減少並加快配送效率。另外,隨著空氣污染等問題越來越嚴重,各國對碳排放的限制也越來越嚴格,這對使用大量車輛的宅配業者來說是一定會面臨到的挑戰。
因此,本研究加入碳排放與電動機車的考量,提出考量碳排放之多車種接駁補貨車輛路徑問題(Heterogeneous Fleet Feeder Vehicle Routing Problem Considering Carbon Emission, EFVRP),然後建立一數學模型和設計模擬退火法(Simulated Annealing, SA)求解EFVRP,探討如何以最小化車輛的移動成本、碳排放懲罰成本與使用成本的總和為目標滿足全部顧客的需求。所以指派各車種的數量、配送路徑以及補貨點位置為本研究欲求解的結果。
本研究在求解的部分會分別以最佳化軟體Gurobi和SA進行求解,其結果顯示SA的求解結果與效率優於最佳化軟體Gurobi。在敏感度分析的部分,由於目前電動機車的價位比燃油機車高,再加上台灣地狹人稠的特性,讓機車的累計移動距離都不會太長,使得機車碳排放懲罰成本和電動機車移動成本的敏感度分析結果不顯著。以目前的現實情況來看,各家宅配業者要在短時間內導入多輛的電動機車到配送車隊中是不太可行的。如果政府可以提出推廣使用電動機車的相關補助,讓電動機車的使用成本減少,才能達到電動機車普及化的目標。
With the booming of e-commerce, the demand for delivery has gradually increased. Delivery operators want to enhance competitiveness and reduce transportation costs. Therefore, there is a new model called Feeder Vehicle Routing Problem (FVRP), which is the extension of VRP. It mainly uses the cooperation of trucks and motorcycles to carry out delivery service. When motorcycles are out of commodity, it can directly find trucks for reloading. This reloading method can reduce overall travel costs and speed up delivery efficiency. Besides, as air pollution problems become more severe, the restrictions on carbon emission become stricter, which is a challenge for delivery operators. Therefore, this thesis adds carbon emission and electric motorcycle considerations, and proposes a Heterogeneous Fleet Feeder Vehicle Routing Problem Considering Carbon Emission (EFVRP). Then formulate a mathematical model and proposes a simulated annealing (SA) method for solving EFVRP. The objective of EFVRP is to minimize the total cost consisting of travel cost, carbon penalty cost, and fixed vehicle cost. The problem was solved by the optimization software Gurobi and the SA method respectively. The results show that SA is outperforming than Gurobi. For sensitivity analysis, the carbon emission penalty cost of motorcycle and the travel cost of an electric motorcycle is not significant.
中華郵政(股)公司-106年郵政年報。資料來源:https://www.post.gov.tw/post/internet/Group/index.jsp?ID=1500273588195
李其霖 (2007),「考慮時間窗限制之卡車拖車路線問題」,國立成功大學工業與資訊管理學系碩士論文。
廖彩雲、羅元辰 (2013)。宅配產業服務品質與顧客滿意度分析--以臺灣五大宅配業者為例。電子商務學報,15(4),461-490。
Brandão, J. (2011). A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem. Computers & Operations Research, 38(1), 140-151.
Brandstätter, C., & Reimann, M. (2018a). The Line-haul Feeder Vehicle Routing Problem: Mathematical model formulation and heuristic approaches. European Journal of Operational Research, 270(1), 157-170.
Brandstätter, C., & Reimann, M. (2018b). Performance analysis of a metaheuristic algorithm for the line-haul feeder vehicle routing problem. Journal on Vehicle Routing Algorithms, 1(2), 121-138.
Chao, I. M. (2002). A tabu search method for the truck and trailer routing problem. Computers & Operations Research, 29(1), 33-51.
Chen, H. K., & Wang, H. (2012). A two-stage algorithm for the extended linehaul-feeder vehicle routing problem with time windows. International Journal of Shipping and Transport Logistics, 4(4), 339-356.
Chen, H. K., Chou, H. W., & Hsu, C. Y. (2011a). The linehaul-feeder vehicle routing problem with virtual depots and time windows. Mathematical Problems in Engineering, 2011, 1-15.
Chen, H. K., Chou, H. W., Hsueh, C. F., & Ho, T. Y. (2011b). The linehaul-feeder vehicle routing problem with virtual depots. IEEE Transactions on Automation Science and Engineering, 8(4), 694-704.
Choi, E., & Tcha, D. W. (2007). A column generation approach for the heterogeneous fleet vehicle routing problem. Computers & Operations Research, 34(7), 2080-2095.
Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568-581.
Cordeau, J. F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007). Chapter 6 Vehicle Routing. In C. Barnhart & G. Laporte (Eds.), Handbooks in Operations Research and Management Science: Transportation. (Vol. 14, pp. 367-428): Elsevier.
Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
Dueck, G., & Scheuer, T. (1990). Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161-175.
Euchi, J., & Chabchoub, H. (2010). A hybrid tabu search to solve the heterogeneous fixed fleet vehicle routing problem. Logistics Research, 2(1), 3-11.
Figliozzi, M. (2010). Vehicle routing problem for emissions minimization. Transportation Research Record: Journal of the Transportation Research Board, 2197(1), 1-7.
Gendreau, M., Laporte, G., Musaraganyi, C., & Taillard, É. D. (1999). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers & Operations Research, 26(12), 1153-1173.
Gerdessen, J. C. (1996). Vehicle routing problem with trailers. European Journal of Operational Research, 93(1), 135-147.
Gheysens, F., Golden, B., & Assad, A. (1984). A comparison of techniques for solving the fleet size and mix vehicle routing problem. Operations Research Spektrum, 6(4), 207-216.
Golden, B., Assad, A., Levy, L., & Gheysens, F. (1984). The fleet size and mix vehicle routing problem. Computers & Operations Research, 11(1), 49-66.
Huang, Y. H., Blazquez, C. A., Huang, S. H., Paredes-Belmar, G., & Latorre-Nuñez, G. (2019). Solving the Feeder Vehicle Routing Problem using ant colony optimization. Computers & Industrial Engineering, 127, 520-535.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680.
Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2016). Thirty years of heterogeneous vehicle routing. European Journal of Operational Research, 249(1), 1-21.
Kwon, Y. J., Choi, Y. J., & Lee, D. H. (2013). Heterogeneous fixed fleet vehicle routing considering carbon emission. Transportation Research Part D: Transport and Environment, 23, 81-89.
Li, F., Golden, B., & Wasil, E. (2007). A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem. Computers & Operations Research, 34(9), 2734-2742.
Li, J., Wang, D., & Zhang, J. (2018). Heterogeneous fixed fleet vehicle routing problem based on fuel and carbon emissions. Journal of Cleaner Production, 201, 896-908.
Li, J., & Zhang, J. H. (2014). Study on the effect of carbon emission trading mechanism on logistics distribution routing decisions. Systems Engineering - Theory & Practice, 34(7), 1779-1787.
Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell System Technical Journal, 44(10), 2245-2269.
Lin, S. W., Yu, V. F., & Lu, C. C. (2011). A simulated annealing heuristic for the truck and trailer routing problem with time windows. Expert Systems with Applications, 38(12), 15244-15252.
Potvin, J. Y., & Rousseau, J. M. (1995). An exchange heuristic for routing problems with time windows. Journal of the Operational Research Society, 46(12), 1433-1446.
Renaud, J., & Boctor, F. F. (2002) A sweep-based algorithm for the fleet size and mix vehicle routing problem. European Journal of Operational Research, 140(3), 618-628.
Salhi, S., & Rand, G. K. (1993). Incorporating vehicle routing into the vehicle fleet composition problem. European Journal of Operational Research, 66(3), 313-330.
Scheuerer, S. (2006). A tabu search heuristic for the truck and trailer routing problem. Computers & Operations Research, 33(4), 894-909.
Taillard, É. D. (1999). A heuristic column generation method for the heterogeneous fleet vehicle routing problem. RAIRO - Operations Research, 33(1), 1-14.
Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2003). A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. Journal of the Operational Research Society, 54(1), 65-71.
Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2004). A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. European Journal of Operational Research, 152(1), 148-158.
Wygonik, E., & Goodchild, A. (2011). Evaluating CO2 emissions, cost, and service quality trade-offs in an urban delivery system case study. International Association of Traffic and Safety Sciences, 35(1), 7-15.
Yu, V. F., Lin, S. W., Lee, W., & Ting, C. J. (2010). A simulated annealing heuristic for the capacitated location routing problem. Computers & Industrial Engineering, 58(2), 288-299.
Yu, V. F., Redi, A. A. N. P., Hidayat, Y. A., & Wibowo, O. J. (2017). A simulated annealing heuristic for the hybrid vehicle routing problem. Applied Soft Computing, 53, 119-132.
Zhang, J., Zhao, Y., Xue, W., & Li, J. (2015). Vehicle routing problem with fuel consumption and carbon emission. International Journal of Production Economics, 170, 234-242.