簡易檢索 / 詳目顯示

研究生: 楊博文
Yang, Bo-wen
論文名稱: 考慮廢舊產品品質水準下之最佳再製造產品組合研究
The study of optimal remanufactured product mix for used products on different quality level
指導教授: 王泰裕
Wang, Tai-yue
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 產品組合閉環供應鏈基因演算法再製造
外文關鍵詞: product mix, Genetic algorithm, closed-loop supply chain, remanufacture
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,受到國際法規的影響,許多企業被要求必須對其生產之產品負起回
    收處理的責任,加上石油及原物料價格波動加遽,造成企業的生產成本,比以往
    高出許多,因此有學者提出閉環供應鏈的概念,在此供應鏈中透過回收廢舊產
    品,以供再製造之用,成為再製造產品。在此環境之下,如何對再製造產品進行
    訂價將是決定製造商獲利與否的重要關鍵。
    由於以往文獻皆假設不同品質水準之廢舊產品,經再製造成為再製造產品,
    其品質與新品相同,本研究認為此假設並不符合現實情況。過去有學者提出單一
    品質之再製造產品訂價模式(Guide et al., 2003c),無法涵蓋不同需求的考慮,因
    此本研究將以Guide 等人之模式為基礎,設立多種品質水準之再製造產品,重新
    建立再製造產品訂價模式,找出再製造產品與廢舊產品之最佳產品組合,同時本
    研究亦將產能限制納入考量,來進行模式建構。
    本研究以ReCelluar 再製造公司之調查資料作為模式參數來源。在求解演算
    法方面,使用基因演算法作為主要求解演算法,輔以內點法與序列二次規劃法作
    對照。在未加入產能限制的求解結果中,本研究驗證了Guide 等人所提出的單一
    再製造產品模式,並且找出以基因演算法來求解本模式,求解表現並不好,因此
    本研究改用序列二次規劃法來進行求解模式。在加入產能限制的求解結果中,本
    研究認為產能限制會影響最佳產品組合,在決策者已知產能限制的情況下,此模
    式可提決策者找出利潤最大化的產品組合。

    Recently, many enterprises are constrained by international regulations to be
    responsible for the recycle and reuse of their products. Besides, the production costs
    of enterprises are increased largely due to the strong fluctuation on the price of
    petroleum and raw material. Consequently, some scholars propose the concept of
    closed-loop supply chain to collect the used-products for remanufacturing. Under this
    environment, how to price the remanufacturing products becomes a key to whether
    the manufacturers make profit or not.
    By literature review, we have found that most models assume the quality of
    remanufacturing product is as good as the new one. This assumption is unrealistic and
    different from the real situation. Moreover, most scholars propose the pricing model
    on a single quality level of remanufacturing products (Guide et al., 2003c). This kind
    of model can not meet the different demand types. Based on Guide’s model, we
    develop a new model that sets different quality levels of remanufacturing product and
    forms different models to find out the optimal product mix of the remanufacturing
    products and used-products. In addition, this model also incorporates the capacity
    constraint.
    In this research, we use the Genetic algorithm to solve the model. In addition to
    Genetic algorithm, we also solve the model by Sequential Quadratic Programming
    and Interior point algorithm. As for the numerical result with the capacity constraint,
    we have found that capacity will affect the optimal product mix. This model also
    provides decision maker to find optimal product mix of maximum profit under known
    capacity constraint.

    摘要................................................................................................................................i Abstract........................................................................................................................ii 目錄.............................................................................................................................. iii 圖目錄..........................................................................................................................iv 表目錄...........................................................................................................................v 第一章 緒論.................................................................................................................1 第一節 研究動機..................................................................................................1 第二節 研究目的..................................................................................................3 第三節 研究範圍、假設與限制..........................................................................3 第四節 研究流程..................................................................................................5 第五節 論文大綱..................................................................................................6 第二章 文獻回顧.........................................................................................................7 第一節 閉環供應鏈管理之相關研究..................................................................7 第二節 產品再生策略........................................................................................12 第三節 再製造產品訂價之相關研究................................................................16 第四節 基因演算法............................................................................................19 第五節 小結........................................................................................................26 第三章 再製造產品組合訂價模式...........................................................................27 第一節 模式建構................................................................................................27 第二節 模式求解方法與流程............................................................................34 第三節 小結........................................................................................................39 第四章 模式驗證與分析...........................................................................................41 第一節 資料收集................................................................................................41 第二節 基因演算法參數設定............................................................................42 第三節 實例驗證與分析....................................................................................46 第四節 小結........................................................................................................54 第五章 結論...............................................................................................................55 第一節 研究結論................................................................................................55 第二節 未來研究方向與建議............................................................................56 參考文獻.....................................................................................................................57 附錄一.........................................................................................................................60 附錄二.........................................................................................................................61 附錄三.........................................................................................................................64 自述..............................................................................................................................68

    1. 周鵬程. (2007). 遺傳演算法原理與應用. 全華圖書.
    2. 林豐澤. (2005a). 演化式計算上篇:演化式演算法的三種理論模式. 智慧科
    技與應用統計學報, 3卷1期, 1-28.
    3. 林豐澤. (2005b). 演化式計算下篇:基因演算法以及三種應用實例. 智慧科
    技與應用統計學報, 3卷1期, 28-56.
    4. 施勵行. (2002). 資源再生與永續性社會. 俊傑書局.
    5. APICS (2002). APICS Dictionary 10th edition. APICS Educational and
    Research Foundation.
    6. Azadivar, F. and Tompkins, G. (1999). Simulation optimization with qualitative
    variables and structural model changes: A genetic algorithm approach. European
    Journal of Operational Research, 113(1), 169-182.
    7. Bakal, I. S. and Akcali, E. (2006). Effects of random yield in remanufacturing
    with price-sensitive supply and demand. Production and Operations
    Management, 15(3), 407-420.
    8. Fleischmann, M., BloemhofRuwaard, J. M., Dekker, R., vanderLaan, E.,
    vanNunen, J. and VanWassenhove, L. N. (1997). Quantitative models for reverse
    logistics: A review. European Journal of Operational Research, 103(1), 1-17.
    9. Fleischmann, M., Krikke, H. R., Dekker, R., and Flapper, S. D. P. (2000). A
    characterisation of logistics networks for product recovery. Omega-International
    Journal of Management Science, 28(6), 653-666.
    10. Freville, A. (2004). The multidimensional 0-1 knapsack problem: An overview.
    European Journal of Operational Research, 155(1), 1-21.
    11. Galbreth, M. R., and Blackburn, J. D. (2006). Optimal acquisition and sorting
    policies for remanufacturing. Production and Operations Management, 15(3),
    384-392.
    12. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and
    Machine Learning. Kluwer Academic Publishers.
    13. Guide, V. D. R., and Srivastava, R. (1997). An evaluation of order release
    strategies in a remanufacturing environment. Computers and Operations
    Research, 24(1), 37-47.
    14. Guide, V. D. R. (2000a). Production planning and control for remanufacturing:
    industry practice and research needs. Journal of Operations Management, 18(4),
    467-483.
    15. Guide, V. D. R., and Jayaraman, V. (2000b). Product acquisition management:
    current industry practice and a proposed framework. International Journal of
    58
    Production Research, 38(16), 3779-3800.
    16. Guide, V. D. R., Jayaraman, V., Srivastava, R., and Benton, W. C. (2000c).
    Supply-chain management for recoverable manufacturing systems. Interfaces,
    30(3), 125-142.
    17. Guide, V. D. R., and Van Wassenhove, L. N. (2001). Managing product returns
    for remanufacturing. Production and Operations Management, 10(2), 142-155.
    18. Guide, V. D. R., Harrison, T. P., and Van Wassenhove, L. N. (2003a). The
    challenge of closed-loop supply chains. Interfaces, 33(6), 3-6.
    19. Guide, V. D. R., Jayaraman, V., and Linton, J. D. (2003b). Building contingency
    planning for closed-loop supply chains with product recovery. Journal of
    Operations Management, 21(3), 259-279.
    20. Guide, V. D. R., Teunter, R. H., and Van Wassenhove, L. N. (2003c). Matching
    demand and supply to maximize profits from Remanufacturing. Manufacturing
    and Service Operations Management, 5(4), 303-316.
    21. Guide, V. D. R., and Van Wassenhove, L. N. (2006a). Closed-loop supply chains:
    An introduction to the feature issue (part 1). Production and Operations
    Management, 15(3), 345-350.
    22. Guide, V. D. R., and Van Wassenhove, L. N. (2006b). Closed-loop supply chains:
    An introduction to the feature issue (part 2). Production and Operations
    Management, 15(4), 471-472.
    23. Gungor, A., and Gupta, S. M. (1999). Issues in environmentally conscious
    manufacturing and product recovery: a survey. Computers and Industrial
    Engineering, 36(4), 811-853.
    24. Held, M., and Karp, R. M. (1970). Traveling-Salesman Problem and Minimum
    Spanning Trees. Operations Research, 18(6), 1138-1162.
    25. Hong, I. H., Assavapokee, T., Ammons, J., Boelkins, C., Gilliam, K., Oudit, D.,
    et al. (2006). Planning the e-scrap reverse production system under uncertainty
    in the state of Georgia: a case study. IEEE Transactions on Electronics
    Packaging Manufacturing , 29(3), 150-162.
    26. Ijomah, W. L., McMahon, C. A., Hammond, G. P., and Newman, S. T. (2007).
    Development of design for remanufacturing guidelines to support sustainable
    manufacturing. Robotics and Computer-Integrated Manufacturing, 23(6),
    712-719.
    27. Jacobsson, N. (2000). Emerging product strategies- selling services of
    remanufactured products. Lund: IIIEE. 193.
    28. Jayaraman, V., Guide, V. D. R., and Srivastava, R. (1999). A closed-loop
    logistics model for remanufacturing. Journal of The Operational Research
    Society, 50(5), 497-508.
    59
    29. Kara, S., Rugrungruang, F., and Kaebernick, H. (2007). Simulation modelling of
    reverse logistics networks. International Journal of Production Economics,
    106(1), 61-69.
    30. Lebreton, B., and Tuma, A. (2006). A quantitative approach to assessing the
    profitability of car and truck tire remanufacturing. International Journal of
    Production Economics, 104(2), 639-652.
    31. Lund, R. I. (1984). Remanufacturing. Technology Review, 87, 18-23.
    32. Mazhar, M. I., Kara, S., and Kaebernick, H. (2007). Remaining life estimation of
    used components in consumer products: Life cycle data analysis by Weibull and
    artificial neural networks. Journal of Operations Management, 25, 1184-1193.
    33. Mitra, S. (2007). Revenue management for remanufactured products.
    Omega-International Journal of Management Science, 35(5), 553-562.
    34. Onwubolu, G. C., and Muting, M. (2001). Optimizing the multiple constrained
    resources product mix problem using genetic algorithms. International Journal
    of Production Research, 39(9), 1897-1910.
    35. Ostlin, J., Sundin, E., and Bjorkman, M. (2008). Importance of closed-loop
    supply chain relationships for product remanufacturing. International Journal of
    Production Economics, In Press, Corrected Proof.
    36. Pongcharoen, P., Hicks, C., Braiden, P. M. and Stewardson, D. J. (2002).
    Determining optimum Genetic Algorithm parameters for scheduling the
    manufacturing and assembly of complex products. International Journal of
    Production Economics, 78(3), PII S0925-5273(0902)00104-00104.
    37. Savaskan, R. C., Bhattacharya, S., and Van Wassenhove, L. N. (2004).
    Closed-Loop Supply Chain Models with Product Remanufacturing. Management
    Science, 50(2), 239-252.
    38. Sundin, E., and Bras, B. (2005). Making functional sales environmentally and
    economically beneficial through product remanufacturing. Journal of Cleaner
    Production, 13(9), 913-925.
    39. Takahashi, K., Morikawa, K., Myreshka, Takeda, D., and Mizuno, A. (2007).
    Inventory control for a MARKOVIAN remanufacturing system with stochastic
    decomposition process. International Journal of Production Economics,
    108(1-2), 416-425.
    40. Thierry, M., Salomon, M., Van Nunen, J., and Van Wassenhove, L. (1995).
    Strategic Issues in Product Recovery Management. California Management
    Review, 37(2), 119.
    41. Vorasayan, J., and Ryan, S. M. (2006). Optimal price and quantity of refurbished
    products. Production and Operations Management, 15(3), 369-383.

    下載圖示 校內:立即公開
    校外:2009-06-25公開
    QR CODE