| 研究生: |
陳逸軒 Chen, I-Hsuan |
|---|---|
| 論文名稱: |
金屬-絕緣層-金屬 二極體之特性研究 Characteristics of metal - insulator - metal diodes |
| 指導教授: |
盧達生
Lu, Dar-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 金屬-氧化物-金屬二極體 、半導體數值模擬 |
| 外文關鍵詞: | MIM Diode, TCAD |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討金屬-氧化物-金屬(M-I-M)結構之二極體元件,利用金屬及中低能隙氧化層材料之蕭特基界面(Schottky barrier)來產生雙向導通電流,此結構使用物理沉積製作,不需高溫製程且適用於三維記憶體之製程整合。本研究將進一步探討各種材料,如何提升導通及斷路狀態之電流比,低溫製程對元件品質的影響,及元件尺吋之縮小,且元件將在無塵室中製作以確保最佳品質。
In this research, the fabrication of metal-insulator-metal (M-I-M) diode is explored. With a Schottky barrier between metal and intermediate-energy-gap insulator layer material, turn on behavior is expected. Physical vapor deposition with low processing temperature is employed for the integration into the three-dimensional memory. We have further explored various material systems with focus on high on-off current ratio, compatibility with low temperature processing, and device scalability. Fabrication of the devices is performed in a clean room environment to minimize contamination.
第一章
[1]G. W. Burr et al., “Overview of candidate device technologies for storage-class memory”, IBM J. of Res. and Dev. (2008).
[2]H. S. P. Wong et al., “Phase Change Memory -A comprehensive and thorough review of PCM technologies, including a discussion of material and device issues, is provided in this paper.”, Proc. IEEE, 98, 12 (2010).
[3]D. C. Ralph, and M. D. Stiles, “Spin Transfer Torques”, J. Magn. Magn. Mater., 320, 7, 1190 (2008).
[4]C. Y. Lin, C. Y. Wu, C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films”, J. Electrochem. Soc., 154, 9 (2007).
[5]K. Gopalakrishnan et al., “Highly-Scalable Novel Access Device based on Mixed Ionic Electronic Conduction (MIEC) Materials for High Density Phase Change Memory (PCM) Arrays”, 2010 Symp. on VLSI Tech. Dig. of Tech. Papers (2010).
[6]J. J. Huang et al., “Transition of stable rectification to resistive-switching in Ti / TiO 2 / Pt oxide diode”, Appl. Phys. Lett., 96, 262901 (2010).
[7]Y. C. Shin et al., “(In,Sn)2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array”, Appl. Phys. Lett., 92, 162904 (2008).
[8]H. Shima, F. Takano, H. Muramatsu, H. Akinaga, I. H. Inoue, and H. Takagi, “Control of resistance switching voltages in rectifying Pt / TiOx / Pt trilayer”, Appl. Phys. Lett., 92, 043510 (2008).
[9]N. Alimardani, E. W. Cowell III, J. F. Wager, and J. F. Conley Jr., “Impact of electrode roughness on metal-insulator-metal tunnel diodes with atomic layer deposited Al2O3 tunnel barriers”, J. of Vac. Sci. Technology, A 30(1), (2012).
[10]M. Chin et al., “Planar metal–insulator–metal diodes based on the Nb/Nb2O5/X material system”, J. of Vacuum Science and Tech. B, 31, 051204 (2013).
第二章
[1]W. D. Boer, “In Active Matrix Liquid Crystal Displays: fundamentals and applications”, Elsevier (2005).
[2]K. K. Ng, “In Complete Guide to Semiconductor Devices 2nd Edition”, Wiley-Interscience, New York, (2002).
[3]J. L. Moll, “Comparison of Hot Electron and Related Amplifiers”, IEEE Trans. Electron Devices, 10, 299 (1963).
[4]S. M. Sze, “Physics of Semiconductor Devices 1st Edition”, Wiley-Interscience, New York , (1969).
[5]S. M. Sze, “High-Speed Semiconductor Devices”, Wiley-Interscience, New York , (1990).
[6]S. M. Sze , K. K. Ng , “Physics of Semiconductor Devices 3rd Edition”, Wiley-Interscience , New York , (2007).
[7]S. P. Kwok, G. I. Haddad, G. Lobov, “Metal‐Oxide‐Metal (M‐O‐M) Detector”, J. Appl. Phys., 42, 554 (1971).
[8]G. M. Elchinger, A. Sanchez, C. F. Davis, A. Javan, “Mechanism of detection of radiation in a high‐speed metal‐metal oxide‐metal junction in the visible region and at longer wavelengths”, J. Appl. Phys., 47, 591 (1976).
[9]M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of Integrated MOM Junctions at dc and at Optical Frequencies”, IEEE J. Quantum Electron., 14, 159 (1978).
[10]M. Brunner, H. Ekrut, A. Hahn, “Metal‐oxide‐metal tunneling junctions on Ta and Nb: Background conductivity resulting from different oxide barriers”, J. Appl. Phys., 53, 1596 (1982).
[11]E. N. Grossman, T. Harvey, C. D. Reintsema, “Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes”, J. Appl. Phys., 91, 10134 (2002).
[12]P. C. D. Hobbs, R. B. Laibowitz, F. R. Libsch, “Ni-NiO-Ni tunnel junctions for terahertz and infrared detection”, Appl. Opt., 44, 6813 (2005).
[13]S. Krishnan, E. Stefanakos, S. Bhansali, “Effects of dielectric thickness and contact area on current–voltage characteristics of thin film metal–insulator–metal diodes”, Thin Solid Films, 516, 2244 (2008).
[14]J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes”, J. Vac. Sci. Technol., B, 27,11 (2009).
[15]B. Berland, “Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell Final Report”, (2003).
[16]G. Lewicki , C. A. Mead , “Experimental Determination of E-K relationship in electron tunneling”, Phy. Rev. Lett., 16 , 939 (1966).
[17]E. W. Lim, and R. Ismail, “Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey”, electronics, 4, 586 (2015).
第三章
[1]C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films”, Appl. Phys. Lett., 86, 262907 (2005).
[2]B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition”, J. Appl. Phys., 98, 033715 (2005).
[3]B. Govoreanu et al., “10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation”, in Proc. IEEE Int. Electron Devices Meeting (IEDM), 31.6.1 (2011).
[4]H. Y. Lee et al., “Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance”, in Proc. IEEE Int. Electron Devices Meeting (IEDM), 19.7.1 (2010).
[5]J. Song, A. I. Inamdar, B. Jang, K. Jeon, Y. Kim, K. Jung, Y. Kim, H. Im, W. Jung, H. Kim, and J. P. Hong, “Effects of Ultrathin Al Layer Insertion on Resistive Switching Performance in an Amorphous Aluminum Oxide Resistive Memory”, Appl. Phys. Express 3, 091101 (2010).
第四章
[1]E. W. C. III, N. Alimardani, C. C. Knutson, J. F. C. Jr., D. A. Keszler, B. J. Gibbons, and J. F. Wager, “Advancing MIM Electronics: Amorphous Metal Electrodes”, Adv. Mater., 23, 74 (2011).
[2]Y. H. Cheng, B. K. Tay, S. P. Lau, H. Kupfer, and F. Richter, “Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc”, J. Appl. Phys., 92, 4 (2002).
[3]H. Shima, F. Takano, H. Muramatsu, H. Akinaga, I. H. Inoue, and H. Takagi, “Control of resistance switching voltages in rectifying Pt / TiOx / Pt trilayer”, Appl. Phys. Lett., 92, 043510 (2008).
[4]Y. C. Shin et al., “(In,Sn)2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array”, Appl. Phys. Lett., 92, 162904 (2008).
[5]V. Jousseaume et al., “Comparative study of non-polar switching behaviors of NiO- and HfO2-based oxide resistive-RAMs”, Solid-State Electron., 58, 62 (2011).
[6]H. Y. Lee, P. S. Chen, C. C. Wang, S. Maikap, P. J. Tzeng, C. H. Lin L. S. Lee, and M. J. Tsai, “Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide”, Jpn. J. Appl. Phys., 46, 4B, 2175 (2007).
[7]Y. Wu, B. Lee, and H.-S. P. Wong, “Al2O3-Based RRAM Using Atomic Layer Deposition (ALD) With 1-μA RESET Current”, IEEE ELECTRON DEVICE LETTERS, 31, 12 (2010).
[8]J. Song, A. I. Inamdar, B. Jang, K. Jeon, Y. Kim, K. Jung, Y. Kim, H. Im, W. Jung, H. Kim, and J. P. Hong, “Effects of Ultrathin Al Layer Insertion on Resistive Switching Performance in an Amorphous Aluminum Oxide Resistive Memory”, Applied Physics Express 3, 091101(2010).
[9]J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, “TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application”, J. Appl. Phys, 109, 033712 (2011).
校內:2021-08-07公開