簡易檢索 / 詳目顯示

研究生: 曹勤
Tsao, Chin
論文名稱: 文心蘭切花生長與網室環境因子之空間分析初探
Investigation of Spatial Models for Oncidium Flower Development and Environmental Factors in a Net House
指導教授: 郭佩棻
Kuo, Pei-Fen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 92
中文關鍵詞: 文心蘭溫度光積值空間誤差模型(SEM)空間自變量滯後模型(SLX)
外文關鍵詞: Oncidium, temperature, light, SEM, SLX
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 文心蘭為台灣總價值最高之外銷切花,根據行政院農業委員會統計,2020年台灣文心蘭切花的出口金額已達到1631萬美元,較排序第二的蝴蝶蘭切花出口金額高出275萬美元。然而氣候變遷影響溫度分布與造成極端氣候,文心蘭產質量皆會受其影響。為降低氣候變遷的負面效應及維持產質量之穩定度,研究環境因子對文心蘭產質量及開花速率的影響有其必要性。目前相關的研究試驗多在絕對溫度控制的溫室裡進行,與農民實際栽種在無溫度控制並與外在大氣接觸的網室相差甚大。有別於溫室內環境因子,網室內環境因子需要考量空間異質性的影響,因此使用網室資料後,需納入因與外在大氣接觸產生之空間異質性,故以空間模型作為研究方法。此外,本研究亦首創文心蘭檸檬綠之開花速率模型,以幫助後續預測文心蘭生長周期。
    研究場域為台灣文心蘭主要產地--台中新社。文心蘭切花資料來自132盆檸檬綠品種。本研究中評估文心蘭產質量的變數包含花梗長、分叉數、花朵數與開花速率。花梗長越長、分叉數及花朵數越多,代表品質越佳;開花速率越高代表所需開花時間越短,產量越高。開花速率是以可見花芽至花開七成(切花日)的天數之倒數定義。考量文心蘭生長週期,選擇以假球莖影響及開花關鍵期(切花日前17週)之環境因子(溫度與光積值)分析文心蘭質量與開花速率。
    結果顯示僅花梗長及分叉數具有空間相關,即鄰近花盆的花梗長及分叉數會較為相近;花朵數則無前述現象。模型配適部分,花梗長和分叉數的最適模型為空間誤差模型(SEM),表示有其他未納入並具有空間相關性的因子,此結果符合農業資料特性;花朵數的最適模型為空間自變量滯後模型(SLX),表示花朵數受鄰近環境因子影響。在環境因子的相關性上:(1)花梗長與累積日均溫及低光照(一日光積值小於3.394 mol∙m^(-2)∙d^(-1)的天數)呈正相關,與低日夜溫差(小於5℃)的天數則呈負相關;(2)分叉數與高日夜溫差(大於10℃)的天數及高光照(一日光積值大於7.832 mol∙m^(-2)∙d^(-1)的天數)呈正相關、與累積日均溫則呈負相關;(3)花朵數與累積日均溫及高光照呈負相關。綜上,文心蘭偏好日均溫低於29℃及高日夜溫差(大於10℃)。
    由開花速率模型結果,推估文心蘭之生長基礎溫度為6℃,表示低溫延緩生長,而若溫度低於6℃,文心蘭則會停止生長。此結果建議冷天時適當的加溫可避免文心蘭停止生長。開花速率模型推估開花所需累積度日為1723 ℃∙d^(-1),表示自該切花具有可見花芽開始,每日日均溫累積滿1723 ℃時將可以切花(開花比例達到七成)。以上結果可做為文心蘭栽種之網室環境條件設定參考,或應用於推估文心蘭質量和生產時間。

    Among the exported cut flowers of Taiwan, Oncidium has the highest economic value. It has been reported that in 2020, 1371 tons of Oncidium cut flowers with a total value of US$16.31 million were exported from Taiwan. However, climate change could cause extreme weather and raising temperature, which will influence crop yields and Orchids cultivations negatively. To maintain the growth of Oncidium, it is crucial to understand the influences of the environmental conditions on the quality and production of Oncidium. Previous studies that focused on the effects of environmental factors on Oncidium were mostly conducted in greenhouses, which had stable environmental conditions and were highly dissimilar to net houses where Oncidiums are cultivated. Although a few studies attempted to employ environmental data collected from net houses, the spatial characteristics of these data have not been invesitgated yet. Thus, this study aimed to collect environmental data in a net house and analyzed the relationship between the environmental factors and Oncidium flower quality by utilizing seven spatial models. Furthermore, the flower harvest of Oncidesa Gower Ramsey ‘Honey Angel’ was studied by building a thermal time model its flowering rate.
    Data were collected from a net house in Xinshe, Taichung, Taiwan from 2020 April to 2021 June. Oncidium data were gathered from 132 pots and environmental data were obtained from 44 sensors. Important variables of Oncidium were chosen: (1) Longer spike length, more inflorescence branch number and more floret number represent better flower quality; (2) higher flowering rate represents shorter flowering time and more production, in which the flowering rate is the reciprocal of the number of days between visible inflorescence (VI) and 70% of bloomed flowers. Environmental data comprised temperature and light. According to the Oncidium growing stages that affect flower quality, environmental conditions during the 17 weeks before the cutting date were calculated into explanatory variables.
    Results showed that spike length and inflorescence branch number were spatially autocorrelated, but floret number was unexpectedly not spatially autocorrelated. Spatial Error Model (SEM) best described the data of spike length and inflorescence branch number, indicates the existence of omitted spatially autocorrelated variables, which is practical with agronomic information; the spatial-lagged X Model (SLX) best described the floret number, which implies influence from nearby environmental conditions. In general, better flower quality is associated with average daytime temperature no larger than 29℃, and day/night temperature difference larger than 10℃ according to the total effects. From the result of thermal time model, the base temperature of Oncidium was projected at 6℃, indicated lower temperature would postpone its development and it would stop developing below 6℃. This suggests heating in cold weather could prevent flower from stop developing. The thermal time from VI to 70% flowering was estimated at 1723 degree days, implied the Oncidium flower would be ready to cut when the daily average daytime temperature adds up to 1723 degree after VI. These findings show promise to provide indications for improving the environment inside net houses for better Oncidium flower quality and to estimate the Oncidium flower production time.

    ABSTRACT i ACKNOWLEDGMENT v CONTENTS vi LIST OF TABLES viii LIST OF FIGURES x LIST OF ABBREVIATIONS xi DEFINITION OF TERMS xiii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Study Goals 3 CHAPTER 2 LITERATURE REVIEW 5 2.1 Environmental Factors 5 2.2 Oncidium Growth 10 2.3 Study Methods 14 CHAPTER 3 DATA AND METHODOLOGY 16 3.1 Workflow 16 3.2 Data Collection 18 3.2.1 Oncidium Data 18 3.2.2 Environmental Data 20 3.3 Data Processing 23 3.3.1 Spatio-temporal Kriging Interpolation 23 3.3.2 Environmental Variables 25 3.4 Model Building 29 3.4.1 Models Specifications 29 3.4.2 Direct and Spillover Effects 35 3.4.3 Model Diagnostics 39 CHAPTER 4 RESULTS 42 4.1 Spatio-temporal Kriging Results and Explanatory Variables 42 4.2 Model Results 53 4.2.1 Spike Length 54 4.2.2 Inflorescence Branch Number 61 4.2.3 Floret Number 66 4.2.4 Flowering Rate 71 CHAPTER 5 DISCUSSION AND CONCLUSION 73 5.1 Discussion 73 5.2 Conclusion 78 5.3 Study Limitations and Future Works 80 REFERENCES 81 APPENDIX 92 Example of Sensor Raw Data 92

    Adams, S. R., Hadley, P., & Pearson, S. (1998). The Effects of Temperature, Photoperiod, and Photosynthetic Photon Flux on the Time to Flowering of PetuniaExpress Blush Pink’. Journal of the American Society for Horticultural Science, 123(4), 577–580.
    Anselin, L. (1988). Spatial econometrics: methods and models (Vol. 1). Kluwer, Dordrecht.
    Anselin, L., Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). A spatial econometric approach to the economics of site-specific nitrogen management in corn production. American Journal of Agricultural Economics, 86(3), 675–687.
    Auffhammer, M., Hsiang, S. M., Schlenker, W., & Sobel, A. (2013). Using weather data and climate model output in economic analyses of climate change. Review of Environmental Economics and Policy, 7(2), 181–198.
    Baylis, K., Paulson, N., & Piras, G. (2011). Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application. Journal of Agricultural and Applied Economics, 43. https://doi.org/10.1017/S1074070800004326
    Bivand, R., Millo, G., & Piras, G. (2021). A Review of Software for Spatial Econometrics in R. Mathematics, 9(11), 1276.
    Bivand, R., & Piras, G. (2015). Comparing implementations of estimation methods for spatial econometrics.
    Bivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. Test, 27(3), 716–748.
    Blanchard, M. G., & Runkle, E. S. (2008). Temperature and pseudobulb size influence flowering of Odontioda orchids. HortScience, 43(5), 1404–1409.
    Borghi, M., de Souza, L., Yoshida, T., & Fernie, A. R. (2019). Flowers and climate change: a metabolic perspective. New Phytologist, 224(4), 1425–1441.
    Bravo, A. P. T. (2010). Photosynthetic daily light integral, photoperiod, and temperature influence growth, development, and quality of Tecoma stans.
    Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261–304.
    Chang, C. M. (2020). 【論文摘要】文心蘭產期調節技術. 臺中區農業改良場特刊, 142號, 113. https://www.airitilibrary.com/Publication/Index/P20131108002-202010-202011270005-202011270005-113-113
    Chang, C. Y. (2009). Oncidium Health Management. 2009 花卉健康管理研討會, 195–202.
    Chang, Y. C. (1996). Effect of day/night temperature, light level and fertilizer concentration on growth and flowering of oncidium “grower ramsey.”
    Chang, Y. C., & Lee, N. (1998). Effect of Light Level on Pseudobulb Growth and Flowering Quality of Oncidium ‘ Gower Ramsey ’. https://doi.org/10.6179/nit.1998.01.15
    Chang, Y. C., & Lee, N. (1999). Growth, Morphology and Anatomy of Pseudobulb and Inflorescence in Oncidium “Gower Ramsey.” Journal of the Chinese Society for Horticulture Science, 45(1), 87–99.
    Chang, Y. C., & Lee, N. (2000). Effect of Temperature and Fertilizer Concentration on Pseudobulb Growth and Flowering Quality of Oncidium Gower Ramsey . Yung-Chiung Chang and Nean Lee. Journal of Ilan Institute of Technology, 4, 67–76.
    Chang, Y.-C., Chen, H.-W., & Lee, N. (2006). (137) High Temperature Increases the Midday Depression of Net Photosynthesis in Oncidium Gower Ramsey. HortScience, 41(4), 1056D--1057.
    Chang, Y.-C., & Lee, N. (2000). Effect of Temperature and Fertilizer Concentration on Pseudobulb Growth and Flowering Quality of Oncidium Gower Ramsey . Yung-Chiung Chang and Nean Lee. Journal of Ilan Institute of Technology, 4, 67–76.
    Chen, C. (2015). Application of growth models to evaluate the microenvironmental conditions using tissue culture plantlets of Phalaenopsis Sogo Yukidian “V3.” Scientia Horticulturae, 191, 25–30. https://doi.org/10.1016/j.scienta.2015.05.007
    Chen, C. (2019). Evaluation of the effect of temperature on a stem elongation model of Phalaenopsis. Horticulturae, 5(4). https://doi.org/10.3390/horticulturae5040076
    Chen, C., & Hsu, yu mei. (2003). Effect of Accumulated Temperature on the Flower Quality of Oncidium. 52(1), 1–3.
    Chen, C., & Hsu, H.-C. (2009). Statistical technique for the evaluation of the effect of light quality on growing characteristics of in vitro cultures. Biosystems Engineering, 103(3), 257–264. https://doi.org/10.1016/j.biosystemseng.2009.04.004
    Chen, T. H. (2013). Modeling the Effects of Temperature and Photosynthetic Daily Light Integral on Growth and Flowering of Eustoma. [Master’s Thesis, National Taiwan University].
    Cheng, Z.-Y. (2006). Effect of Day/Night Temperature and Simulated Dark Transport on Growth and Flowering quality of Oncidium.
    COA: Agriculture Trading Statistic. (2021). https://agrstat.coa.gov.tw/sdweb/public/trade/TradeCoa.aspx
    Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany, 60(9), 2529–2539.
    Darley, E. F. (1960). Use of plants for air pollution monitoring. Journal of the Air Pollution Control Association, 10(3), 198–199. https://doi.org/10.1080/00022470.1960.10467919
    di Cecco, G. J., & Gouhier, T. C. (2018). Increased spatial and temporal autocorrelation of temperature under climate change. Scientific Reports, 8(1), 1–9.
    Donfouet, H. P. P., Barczak, A., Détang-Dessendre, C., & Maigné, E. (2017). Crop Production and Crop Diversity in France: A Spatial Analysis.
    Elhorst, J. P. (2010). Applied Spatial Econometrics: Raising the Bar. Spatial Economic Analysis, 5(1), 9–28. https://doi.org/10.1080/17421770903541772
    Elhorst, J. P. (2014a). Spatial econometrics from cross-sectional data to spatial panels. Springer.
    Elhorst, J. P. (2014b). Spatial Econometrics From Cross-Sectional Data to Spatial Panels (Vol. 16).
    Elhorst, J. P., & Vega, S. H. (2013). On spatial econometric models, spillover effects, and W.
    El-Keblawy, A., Bhatt, A., Gairola, S., & others. (2015). Storage on maternal plants affects light and temperature requirements during germination in two small seeded halophytes in the Arabian deserts. Pakistan Journal of Botany, 47(5), 1701–1708.
    Fay, M. F. (2018). Orchid conservation: how can we meet the challenges in the twenty-first century? Botanical Studies, 59(1), 1–6.
    Fingleton, B., & Arbia, G. (2008). New spatial econometric techniques and applications in regional science. Papers in Regional Science, 87(3), 311–317.
    Florax, R. J. G. M., Voortman, R. L., & Brouwer, J. (2002). Spatial dimensions of precision agriculture: a spatial econometric analysis of millet yield on Sahelian coversands. Agricultural Economics, 27(3), 425–443.
    Gibbons, S., & Overman, H. G. (2012). Mostly pointless spatial econometrics? Journal of Regional Science, 52(2), 172–191.
    Golgher, A. B., & Voss, P. R. (2016). How to Interpret the Coefficients of Spatial Models: Spillovers, Direct and Indirect Effects. In Spatial Demography (Vol. 4, Issue 3). https://doi.org/10.1007/s40980-015-0016-y
    Gonçalves, E., st. Aubyn, A., & Martins, A. (2007). Mixed spatial models for data analysis of yield on large grapevine selection field trials. In Theoretical and Applied Genetics (Vol. 115, Issue 5, pp. 653–663). https://doi.org/10.1007/s00122-007-0596-z
    Gräler, B., Pebesma, E., & Heuvelink, G. (2016). Spatio-Temporal Interpolation using gstat. 1–16.
    Griffin, T. W., Fitzgerald, G. J., Lowenberg-DeBoer, J. M., & Barnes, E. M. (2020). Modeling local and global spatial correlation in field-scale experiments. Agronomy Journal.
    Hew, C. S., & Yong, J. W. H. (1994). Growth and photosynthesis of Oncidium “Goldiana.” Journal of Horticultural Science, 69(5), 809–819. https://doi.org/10.1080/14620316.1994.11516517
    Hsu, H.-C., & Chen, C. (2010). The effect of light spectrum on the growth characteristics of in vitro cultures of phalaenopsis. Propagation of Ornamental Plants, 10(1), 3–8.
    Huang, C. H., Hsuan, H. S., Huang, S. H., & Huang, K. L. (2008). Effect of Different Day/Night Temperatures on Flower-Stalk Emergence Inhibition and Flowering of Phalaenopsis hybrids. https://doi.org/10.6964/JTSHS.200803.0011
    Huang, K. L., 江仲鈞, 郭威廷, & 陳俊諺. (2018). 設施內文心蘭盆花栽培技術—開花期及催花管理. 農業試驗所特刊, 213.
    Huang, T. H. (2010). Effect of Nitrogen Form Ratio , Phosphorous and Night Break on Growth and Flowering of Spathoglottis plicata. https://doi.org/10.6845/NCHU.2010.00632
    Ilmy, H. F. (2020). The Effect of Weather Conditions on Oncidium Orchid Production and Quality in Shading-Net Greenhouse using Spatial Analysis. https://doi.org/10.6844/NCKU202000126
    Ilmy, H. F., Kuo, P.-F., & Huang, T.-E. (2020). The spatial relationship between weather and oncidium production. 40th Asian Conference on Remote Sensing, ACRS 2019: Progress of Remote Sensing Technology for Smart Future.
    Jeong, S. J., Lee, H. B., An, S. K., & Kim, K. S. (2020). High temperature stress prior to induction phase delays flowering initiation and inflorescence development in Phalaenopsis queen beer ‘Mantefon.’ Scientia Horticulturae, 263. https://doi.org/10.1016/j.scienta.2019.109092
    Kilibarda, M., Hengl, T., Heuvelink, G. B. M., Gräler, B., Pebesma, E., Perčec Tadić, M., & Bajat, B. (2014). Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. Journal of Geophysical Research: Atmospheres, 119(5), 2294–2313.
    Kolanowska, M., Kras, M., Lipińska, M., Mystkowska, K., Szlachetko, D. L., & Naczk, A. M. (2017). Global warming not so harmful for all plants-response of holomycotrophic orchid species for the future climate change. Scientific Reports, 7(1), 1–13.
    Lacombe, D. J., & LeSage, J. P. (2015). Using B ayesian posterior model probabilities to identify omitted variables in spatial regression models. Papers in Regional Science, 94(2), 365–383.
    Lai, S. L., & Dai, T. E. (2018). 臺灣文心蘭盆花品種選擇—環境選擇篇. 農業試驗所特刊第213號, 8–15.
    Lee, N., & Chen, Y.-L. (2004). Effect of Temperature and Growing Location on Growth and Carbohydrate Content of Oncidium “Puli Grifith.” https://doi.org/10.6964/JCSHS.200412.0453
    Leifeld, P. (2013). Texreg: Conversion of statistical model output in R to LATEX and HTML tables. Journal of Statistical Software, 55(8). https://doi.org/10.18637/jss.v055.i08
    LeSage, J. P. (2014). What regional scientists need to know about spatial econometrics. Review of Regional Studies, 44(1), 13–32. https://doi.org/10.52324/001c.8081
    LeSage, J. P., & Pace, R. K. (2011). Pitfalls in higher order model extensions of basic spatial regression methodology. Review of Regional Studies, 41(1), 13–26.
    Lesage, J. P., & Pace, R. K. (2014). The biggest myth in spatial econometrics. Econometrics, 2(4), 217–249. https://doi.org/10.3390/econometrics2040217
    LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. Chapman and Hall/CRC.
    Lesage, J., & Pace, R. K. (2017). Introduction to Spatial Econometrics. In Spatial Econometrics. https://doi.org/10.4324/9780429325038-9
    Li, S., Griffith, D. A., & Shu, H. (2020). Temperature prediction based on a space--time regression-kriging model. Journal of Applied Statistics, 47(7), 1168–1190.
    Liu, H., Feng, C. L., Luo, Y. B., Chen, B. S., Wang, Z. S., & Gu, H. Y. (2010). Potential challenges of climate change to orchid conservation in a Wild Orchid Hotspot in Southwestern China. Botanical Review, 76(2), 174–192. https://doi.org/10.1007/s12229-010-9044-x
    Liu, Z., Griffin, T. W., Kirkpatrick, T. L., & Monfort, W. S. (2015). Spatial econometric approaches to developing site-specific nematode management strategies in cotton production. Precision Agriculture, 16(5), 587–600.
    Lu, Y. C. (2010). Effects of Environmental Factors on Photosynthesis and Rubisco Activity of Oncidium Gower Ramsey.
    Menard, S. (2002). Applied logistic regression analysis (Vol. 106). Sage.
    Montero, J.-M., Fernández-Avilés, G., & Mateu, J. (2015). Spatial and spatio-temporal geostatistical modeling and kriging (Vol. 998). John Wiley & Sons.
    Munir, M., Hadley, P., Carew, J., Adams, S., Pearson, S., & others. (2017). Modification of photo-thermal model by accommodating light integrals using antirrhinum flowering and leaf number data from restricted range of environmental conditions. Pakistan Journal of Botany, 49(1), 181–186.
    Munir, M., Hadley, P., Carew, J., Adams, S., Pearson, S., & Sudhakar, B. (2015). Effect of constant temperatures and natural daylength on flowering time and leaf number of Antirrhinum using the photo-thermal model. Pakistan Journal of Botany, 47(5), 1717–1720.
    Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., & others. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc.
    Pebesma, E. (2012). spacetime: Spatio-temporal data in R. Journal of Statistical Software, 51(7), 1–30.
    Pebesma, E., & Bivand, R. S. (2005). S classes and methods for spatial data: the sp package. R News, 5(2), 9–13.
    Pebesma, E., & Heuvelink, G. (2016). Spatio-temporal interpolation using gstat. RFID Journal, 8(1), 204–218.
    Postiglione, P. (2021). Spatial Econometric Methods in Agricultural Economics Using R. CRC Press.
    R Core Team. (2020). R: A Language and Environment for Statistical Computing. https://www.r-project.org/
    Roberts, E. H., & Summerfield, R. J. (1987). Measurement and prediction of flowering in annual crops. Manipulation of Flowering.
    S, J., & M, Z. I. (1992). Morphological and Anatomical Studies of Leaves of Different Plants Affected By Motor Vehicles Exhaust. Environmental Sciences, Table 1, 21–23.
    Shyu, H.-E., & Lin, R.-S. (1997). Studies on Growth and Flowering of Oncidium. Horticulture NCHU, 22(2), 123–134.
    Snepvangers, J., Heuvelink, G. B. M., & Huisman, J. A. (2003). Soil water content interpolation using spatio-temporal kriging with external drift. Geoderma, 112(3–4), 253–271.
    Teruhiko Komori. (1986). シンビジウムの光管理と生育開花および光合成產物の關係. 農耕と園藝 43(12) : 122-125.
    Thimijan, R. W., & Heins, R. D. (1983). Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience, 18(6), 818–822.
    Tiwari, S., Agrawal, M., & Marshall, F. M. (2006). Evaluation of ambient air pollution impact on carrot plants at a sub urban site using open top chambers. Environmental Monitoring and Assessment, 119(1–3), 15–30. https://doi.org/10.1007/s10661-005-9001-z
    Tsai, P. F. (2000). 溫度, 光度, 栽培介質及肥料濃度對文心蘭苗生育之影響.
    Tsai, T. M., & Lai, S. L. (2018). 設施內文心蘭盆花栽培技術—營養期栽培管理. 符合輸美文心蘭盆花規範之系統性技術栽培手冊, 24–31.
    Vroege, W., Meraner, M., Polman, N., Storm, H., Heijman, W., & Finger, R. (2020). Beyond the single farm – A spatial econometric analysis of spill-overs in farm diversification in the Netherlands. Land Use Policy, 99(September), 105019. https://doi.org/10.1016/j.landusepol.2020.105019
    Walters, K. J., & Currey, C. J. (2019). Growth and development of basil species in response to temperature. HortScience, 54(11), 1915–1920.
    Wang, D., Gouhier, T. C., Menge, B. A., & Ganguly, A. R. (2015). Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518(7539), 390–394.
    Wang, G., & Dillon, M. E. (2014). Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nature Climate Change, 4(11), 988–992.
    Warner, R. M. (2010). Temperature and photoperiod influence flowering and morphology of four Petunia spp. HortScience, 45(3), 365–368.
    Yao, M. H., Hong, F. L., & Chao, C. M. (2016). Development of an Automatic Control System for Open-Roof Greenhouse. 台灣農業研究, 65(3), 306–312. https://doi.org/10.6156/JTAR/2016.06503.08
    Yao, M.-H. (2011). 光度單位轉換問題之探討. 26–29. https://doi.org/10.29571/ZHWHGX.201103.0008
    Yih, M. S. (2014). Lighting Treatment Effort of High Pressure Sodium Lamp on Flowering Period and Cut Flower Quality of Oncidium Gower Ramsey “Honey Angel.” 50, 41–50.
    Yun, S. D., & Gramig, B. M. (2021). Spatial Panel Models of Crop Yield Response to Weather: Econometric Specification Strategies and Prediction Performance. Journal of Agricultural and Applied Economics, 1–19.
    Zhan, T. Z., Liao, C. H., Tsai, W. Y., Chen, J. M., & Yih, M. S. (2020). Research on Physiological Indexes of Temperature Stress on Potted Oncidium cvs. 臺中區農業改良場研究彙報, 149, 15–28.
    Zhang, Y. bo. (2008). Study in Florescence Control of Oncidium.
    切花品質分級與採收後處理. (2007). 行政院農業委員會. https://kmweb.coa.gov.tw/subject/subject.php?id=13645

    無法下載圖示 校內:2027-02-07公開
    校外:2027-02-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE