研究生: |
張孆之 Chang, Ying-Chih |
---|---|
論文名稱: |
STIM1基因變異點對於鈣離子訊號調節的潛在影響 The potential effects of STIM1 genetic variants on the regulation of Ca2+ signaling |
指導教授: |
沈孟儒
Shen, Meng-Ru |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 鈣離子 、超高解析度顯微影像系統 、基質交互因子1 、點突變 、鈣池調控鈣離子流入機制 |
外文關鍵詞: | Ca2+, direct stochastic optical reconstruction microscopy (dSTORM), STIM1, single-nucleotide polymorphisms, store-operated calcium entry (SOCE) |
相關次數: | 點閱:119 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
细胞内鈣離子恆定在癌症進程中,如腫瘤增生、侵襲與轉移都扮演極重要的角色。在腫瘤組織有高度表現之基質交互因子1(stromal interaction molecule 1,STIM1)是位於內質網膜上的鈣離子感測蛋白,藉由活化 “鈣池調控鈣離子流入”(Store-operated calcium entry,SOCE)機制,調控癌细胞内鈣離子恆定進而啟動癌細胞行為。然而,STIM1基因點突變如何影響癌症進程目前未被深入探討。本研究應用COSMIC癌症基因突變資料庫找出六個位於STIM1 cEF-hand的基因變異,其中包含D76G、D76V、D76H、D84Y、D84E以及D84N。接下來,我們釐清這些STIM1基因變異如何改變癌細胞的進展。首先,由量測細胞內部鈣離子變化結果顯示,STIM1基因變異對於SOCE活化的影響。另外,這些基因變異亦參與依賴鈣離子訊號調控之癌細胞爬行行為。同時,STIM1基因變異藉由影響細胞週期調控者p21進而改變癌細胞生長功能。後續利用超高解析度顯微影像技術分析,了解這些基因變異如何影響STIM1在SOCE活化過程中的空間分布情形。綜合以上結果,STIM1 cEF-hand基因變異會透過調控鈣離子信號,影響癌細胞的功能,並在SOCE活化過程中改變STIM1蛋白於動態空間分布之進程。
The intracellular Ca2+ homeostasis plays a vital role in cancer initiation, tumor progression, invasion, and metastasis. Stromal interaction molecule 1 (STIM1), as an endoplasmic reticulum (ER) Ca2+ sensor, can control intracellular Ca2+ homeostasis via store-operated calcium entry (SOCE) and is abundantly expressed in tumor tissues. However, the single-nucleotide polymorphisms of the STIM1 gene in cancer progression remain unclear. First, we analyzed the genomic data of cancer patients from the COSMIC database to investigate which variants of the STIM1 gene involved in tumor cell behaviors. Six somatic variants of the STIM1 gene located in the cEF hand domain are identified, including D76G, D76V, D76H, D84Y, D84E, and D84N mutations. Next, we clarify the impacts of somatic variants in STIM1 cEF-hand domains on cancer cell progression. Intracellular Ca2+ measurement results showed that somatic STIM1 variants impacted SOCE activation. Furthermore, these STIM1 mutations also participate in mediating Ca2+-dependent cancer cell migration. These somatic variants affect cancer cell proliferation via cell cycle regulator, p21. Importantly, the results from two-color mapping dSTORM super-resolution images indicated that these gene variants also affect the spatiotemporal distribution of STIM1 during SOCE activation. Together, somatic variants in the cEF-hand domain affected tumor cellular functions via STIM1-dependent Ca2+ signaling and altered the spatiotemporal dynamics of STIM1 during SOCE activation.
Abdullaev, I.F., Bisaillon, J.M., Potier, M., Gonzalez, J.C., Motiani, R.K., and Trebak, M. (2008). STIM1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103, 1289-1299.
Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517-529.
Bird, G.S., and Putney, J.W., Jr. (2018). Pharmacology of store-operated calcium entry channels. Calcium entry channels in non-excitable cells (Boca Raton (FL)), pp. 311-324.
Bohm, J., Chevessier, F., Maues De Paula, A., Koch, C., Attarian, S., Feger, C., Hantai, D., Laforet, P., Ghorab, K., Vallat, J.M., et al. (2013). Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 92, 271-278.
Chen, Y.F., Chen, L.H., and Shen, M.R. (2019). The distinct role of STIM1 and STIM2 in the regulation of store-operated calcium entry and cellular function. J Cell Physiol 234, 8727-8739.
Chen, Y.F., Chen, Y.T., Chiu, W.T., and Shen, M.R. (2013). Remodeling of calcium signaling in tumor progression. J Biomed Sci 20, 23.
Chen, Y.F., Chiu, W.T., Chen, Y.T., Lin, P.Y., Huang, H.J., Chou, C.Y., Chang, H.C., Tang, M.J., and Shen, M.R. (2011). Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci USA 108, 15225-15230.
Fletcher, D.A., and Mullins, R.D. (2010). Cell mechanics and the cytoskeleton. Nature 463, 485-492.
Forbes, S.A., Bindal, N., Bamford, S., Cole, C., Kok, C.Y., Beare, D., Jia, M., Shepherd, R., Leung, K., Menzies, A., et al. (2011). COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39, D945-950.
Gao, J., Chang, M.T., Johnsen, H.C., Gao, S.P., Sylvester, B.E., Sumer, S.O., Zhang, H., Solit, D.B., Taylor, B.S., Schultz, N., et al. (2017). 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med 9, 4.
Gifford, J.L., Walsh, M.P., and Vogel, H.J. (2007). Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405, 199-221.
Gudlur, A., and Hogan, P.G. (2017). The STIM-Orai pathway: Orai, the pore-forming subunit of the CRAC channel. Adv Exp Med Biol 993, 39-57.
Janke, C., and Magiera, M.M. (2020). The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 21, 307-326.
Liou, J., Kim, M.L., Heo, W.D., Jones, J.T., Myers, J.W., Ferrell, J.E., Jr., and Meyer, T. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15, 1235-1241.
Luik, R.M., Wang, B., Prakriya, M., Wu, M.M., and Lewis, R.S. (2008). Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538-542.
Misceo, D., Holmgren, A., Louch, W.E., Holme, P.A., Mizobuchi, M., Morales, R.J., De Paula, A.M., Stray-Pedersen, A., Lyle, R., Dalhus, B., et al. (2014). A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 35, 556-564.
Morin, G., Bruechle, N.O., Singh, A.R., Knopp, C., Jedraszak, G., Elbracht, M., Bremond-Gignac, D., Hartmann, K., Sevestre, H., Deutz, P., et al. (2014). Gain-of-function mutation in STIM1 (P.R304W) is associated with Stormorken Syndrome. Hum Mutat 35, 1221-1232.
Noury, J.B., Bohm, J., Peche, G.A., Guyant-Marechal, L., Bedat-Millet, A.L., Chiche, L., Carlier, R.Y., Malfatti, E., Romero, N.B., and Stojkovic, T. (2017). Tubular aggregate myopathy with features of Stormorken disease due to a new STIM1 mutation. Neuromuscul Disord 27, 78-82.
Parekh, A.B. (2010). Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 9, 399-410.
Park, C.Y., Hoover, P.J., Mullins, F.M., Bachhawat, P., Covington, E.D., Raunser, S., Walz, T., Garcia, K.C., Dolmetsch, R.E., and Lewis, R.S. (2009). STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876-890.
Prakriya, M. (2013). The theory, operation, and roles of store-operated calcium. Curr Top Membr 71, xi-xii.
Samanta, K., and Parekh, A.B. (2016). Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma. Philos Trans R Soc Lond B Biol Sci 371, 20150424.
Schober, R., Bonhenry, D., Lunz, V., Zhu, J., Krizova, A., Frischauf, I., Fahrner, M., Zhang, M., Waldherr, L., Schmidt, T., et al. (2019). Sequential activation of STIM1 links Ca2+ with luminal domain unfolding. Sci Signal 12, eaax3194.
Smyth, J.T., DeHaven, W.I., Bird, G.S., and Putney, J.W., Jr. (2007). Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J Cell Sci 120, 3762-3771.
Stathopulos, P.B., Zheng, L., Li, G.Y., Plevin, M.J., and Ikura, M. (2008). Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110-122.
Yang, I.H., Tsai, Y.T., Chiu, S.J., Liu, L.T., Lee, H.H., Hou, M.F., Hsu, W.L., Chen, B.K., and Chang, W.C. (2013). Involvement of STIM1 and Orai1 in EGF-mediated cell growth in retinal pigment epithelial cells. J Biomed Sci 20, 41.
Yang, S., Zhang, J.J., and Huang, X.Y. (2009). Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15, 124-134.