| 研究生: |
邱民昇 Chiu, Min-Sheng |
|---|---|
| 論文名稱: |
差壓煙控應用於潔淨室煙損防制效益之研究 A Study on the Smoke Damage Evaluation with Pressure Difference Smoke Control Strategy in a Multi-Level Cleanroom |
| 指導教授: |
曾俊達
Tzeng, Chun-Ta |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 潔淨室 、火災 、排煙 、煙控 、FDS |
| 外文關鍵詞: | cleanroom, fire, smoke exhaust, smoke control, FDS |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高科技電子製造屬高資本密集工業,以一座標準量產之12吋晶圓廠為例,建置成本已逾三十億美金,若加上製程研發資金、生產測試、材料開發與試營運的投資,成本更為驚人。然而,在投入龐大資金時的同時,也突顯企業可能面臨的天災人禍等不可預期風險。借鏡歷年有關高科技廠房火災事故,可發現到燃燒過程衍生的懸浮微粒會隨潔淨室(cleanroom)內部循環氣流擴散,導致製程設備、廠務設施與潔淨室環境受汙染,進而使生產線中斷,影響正常出貨能力,嚴重者甚至會造成市場供需失衡。因此就如何降低火災煙流對潔淨室的影響,已為企業亟欲克服的議題。
歷年有關高科技廠房排煙設計之文獻論著者,多從人員生命安全為基,優先評估煙層下降時間後,再計算最大容留人員安全避難所須時間,再據以論述煙控設計的成效;鮮少從營運持續面,探討煙損對高科技業廠房可能造成影響規模。本文應用火災模擬軟體FDS (Fire Dynamics Simulator),針對高科技製程工廠之典型潔淨室執行火災煙氣熱流模擬,分析特定設計火源的煙損害程度。FDS模擬情境中火源設計,以潔淨室內高火載量區域與高風險性物質為主,包括晶舟盒儲區、聚氯乙烯布搭建的棚架與消耗低閃火點物質的製程設備等,據以評估潔淨室差壓煙控策略下的煙損害程度。業界採行的差壓煙控手段係透過FFU出口風速的調節,建構出差壓環境來侷限煙流後,再輔以排煙機於天花板處抽取煙氣,以達煙損防制目的。
部分的FDS模擬情境,吾人亦將撒水系統參數納入情境內模擬,藉以評估撒水系統對煙損害防制效益上的貢獻。經由FDS的模擬結果顯示,垂直層流式潔淨室採用FFU降速或停止運轉之環境差壓控制與上排煙系統,對熱釋放率達3MW規模以上的淡煙氣體流場所產生的抑制效果甚為有限;而撒水設備的防護作用對HRR 大於1.35MW儲區火災可適時提供保護作用,間接可創造較佳煙損防制效益。
This study assesses the smoke control system performance using computer simulation techniques for a down-flow ball room cleanroom. To evaluate the smoke damage impact from the potential fire events, some computational fluid dynamics analyses were performed by use of the NIST Fire Dynamics Simulator. In addition to the simulation, several fire tests were conducted to gather the heat release rate (HRR) and soot yield data in accordance with ISO 5660-1 test methods and 10MW full scale fire test method. The tests result show, the HRR and soot yield data from IPA combustion to be 0.81MW/m2 and 0.0016.
A mchanical equipment system was employed for the smoke control system in the cleanroom, such as fan filter units to develop pressure differences between smoke zones for restricting smoke migration, and used smoke exhaust fans to drawing airborne particles from ceiling. The results show that smoke particles could easily transport across several adjacent smoke zones and contaminate production tools in cases of fire scale over 3MW. On the other hand, the sprinkler system is performed very well to suppress fire within three minutes under the same conditions.
1.C Huggett, “Estimation of Heat Release by Means of Oxygen Consumption Measurement”, J. of Fire and Materials, Vol. 12, pp.61-65, 1980.
2.“FM 7-7 Semiconductor Fabrication Facilities”, FM Global
3.Gunnar .Heskestad, “Smoke Distribution from Fire Plumes in Uniform Downdraft from Ceiling”, Fire Safety Journal 39, pp.358-374, 2004.
4.Hall, J.R.,“An analysis of automatic sprinkler system reliability using current data”, National Fire Protection Association, 2006.
5.Heskestad, G., “Engineering Relations for Fire Plumes”, Fire safety Journal, Vol. 7, p.25, 1984.
6.Heskestad, G., Bill, R. G., “Conduction Heat-Loss Effects on Thermal Response of Automatic Sprinklers”, Factory Mutual Research Corporation, Norwood, MA, 1987.
7.Hu, S.C., Wu, Y.Y., and Liu, C.J., “Measurements of Air Flow Characteristics In a Full-Scale Clean Room”, Building and Environment, vol.31, pp.119-128, 1996.
8.Huo, Y., Gao, Y., Wu, H.M., Zhao, J.H., “The Characteristics of Temperature Near the Ceiling of Liquid Fires in Vertical Laminar Clean Room Environments”, IEEE, 2009.
9.John, H.K., James, A.M., Paul, G.T., Ahmed, K., Michael, J.F., “Handbook of Smoke control engineering”, ASHRAE, 2012.
10.Kevin B. McGrattan, Howard R. Baum, Anthony Hamins, “Thermal Radiation from Large Pool Fires”, National Institute of Standards and Technology, NISTIR 6546, 2000.
11.Maria Hjohlman, Petra Andersson, “Flame spread modelling of complex textile materials”, Fire Technologye Vol.47 p.85-106, 2011.
12.Min-sheng Chiu, Chun-Ta Tzeng, Ta-Hui Lin “Experimental Investigation of an Office Fire with a Partially Impaired Sprinkler System” Interflam 2010, Nottingham, UK, 2010.
13.Min-Sheng Chiu, Johan Kristantama, Chun-Ta Tzeng, Chi-Ming Lai, “Energy Saving and Thermal Comfort Performance of Air Conditioners Incorporating Distributed Environmental Sensing by Wireless Sensir network”, 2014.
14.“NFPA 318 Standard for the Protection of Semiconductor Fabrication Facilities”, National Fire Protection Association, 2012.
15.“NFPA 12 Standard on Carbon Dioxide Extinguishing Systems”, National Fire Protection Association, 2008.
16.“SFPE Handbook of Fire Protection Engineering, Third Edition”, National Fire Protection Association, 2003.
17.Shih Cheng Hu, Chao Ching Chen, “Locating the very early smoke detector apparatus (VESDA) in vertical laminar clean rooms according to the trajectories of smoke particles”, Building and Environment, vol.42, pp.366–371, 2007.
18.Soonil Nam, “Numerical simulation of smoke movement in clean room environments”, Fire Safety Journal, Vol.34, pp. 169-189, 2000.
19.VESDA Aspirating Smoke Detection Design Guide, Semiconductor Clean Room.
20.Vincent DeGiorgio, “A return on Investment: FM4911 Approved Front Opening Unified Pods” FM Global, 2009.
21.W. Thornton, “The Relation if Oxygen to the Heat of Combustion of Organic Compounds”, Philosophical Magazine and J. of Science, Vol. 33, No. 196, 1917.
22.William E. Koffel, P.E., “Reliability of automatic sprinkler systems”, Koffel Associates, 2005.
23.王俊傑,「高科技廠房防火工程設計應用-以晶圓廠為例」,國立交通大學機械工程研究所,2003
24.邱晨瑋,「區劃空間火災閃燃和回燃現象實驗及十二吋晶圓廠無塵室防火性能設計之研究」,交通大學, 2005
25.吳心玫,「半導體廠房空間之研究─以廠務設施為例」,中華大學建築與都市計畫學系,2008
26.吳念坤,「晶圓廠無塵室之性能式煙控設計功效評估」,成功大學土木工程研究所,2013
27.陳朝慶,「無塵室火災模擬」,中山大學機械工程研究所,2001年
28.陳詠翔,「半導體廠房無塵室煙控系統設計」,國立交通大學機械工程學系,2012
29.蔡銘儒、王鵬智、詹家旺,「建築防火安全設計與驗證研究-以辦公室為例」,內政部建築研究所,2006
30.蔡銘儒,「大尺度火災分析裝置之發展與應用」,國立台灣科技大學,2007
31.賴葦芸,「高科技廠房防火安全性能研究-避難安全評估」,國立交通大學機械研究所,2001
校內:2021-06-01公開